A Label Attention Model for ICD Coding from Clinical Text
- URL: http://arxiv.org/abs/2007.06351v1
- Date: Mon, 13 Jul 2020 12:42:43 GMT
- Title: A Label Attention Model for ICD Coding from Clinical Text
- Authors: Thanh Vu, Dat Quoc Nguyen, Anthony Nguyen
- Abstract summary: We propose a new label attention model for automatic ICD coding.
It can handle both the various lengths and the interdependence of the ICD code related text fragments.
Our model achieves new state-of-the-art results on three benchmark MIMIC datasets.
- Score: 14.910833190248319
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: ICD coding is a process of assigning the International Classification of
Disease diagnosis codes to clinical/medical notes documented by health
professionals (e.g. clinicians). This process requires significant human
resources, and thus is costly and prone to error. To handle the problem,
machine learning has been utilized for automatic ICD coding. Previous
state-of-the-art models were based on convolutional neural networks, using a
single/several fixed window sizes. However, the lengths and interdependence
between text fragments related to ICD codes in clinical text vary
significantly, leading to the difficulty of deciding what the best window sizes
are. In this paper, we propose a new label attention model for automatic ICD
coding, which can handle both the various lengths and the interdependence of
the ICD code related text fragments. Furthermore, as the majority of ICD codes
are not frequently used, leading to the extremely imbalanced data issue, we
additionally propose a hierarchical joint learning mechanism extending our
label attention model to handle the issue, using the hierarchical relationships
among the codes. Our label attention model achieves new state-of-the-art
results on three benchmark MIMIC datasets, and the joint learning mechanism
helps improve the performances for infrequent codes.
Related papers
- Auxiliary Knowledge-Induced Learning for Automatic Multi-Label Medical Document Classification [22.323705343864336]
We propose a novel approach for ICD indexing that adopts three ideas.
We use a multi-level deep dilated residual convolution encoder to aggregate the information from the clinical notes.
We formalize the task of ICD classification with auxiliary knowledge of the medical records.
arXiv Detail & Related papers (2024-05-29T13:44:07Z) - CoRelation: Boosting Automatic ICD Coding Through Contextualized Code
Relation Learning [56.782963838838036]
We propose a novel approach, a contextualized and flexible framework, to enhance the learning of ICD code representations.
Our approach employs a dependent learning paradigm that considers the context of clinical notes in modeling all possible code relations.
arXiv Detail & Related papers (2024-02-24T03:25:28Z) - Accurate and Well-Calibrated ICD Code Assignment Through Attention Over
Diverse Label Embeddings [1.201425717264024]
Manual assigning ICD codes to clinical text is time-consuming, error-prone, and expensive.
This paper describes a novel approach for automated ICD coding, combining several ideas from previous related work.
Experiments with different splits of the MIMIC-III dataset show that the proposed approach outperforms the current state-of-the-art models in ICD coding.
arXiv Detail & Related papers (2024-02-05T16:40:23Z) - An Automatic ICD Coding Network Using Partition-Based Label Attention [2.371982686172067]
We propose a novel neural network architecture composed of two parts of encoders and two kinds of label attention layers.
The input text is segmentally encoded in the former encoder and integrated by the follower.
Our results show that our network improves the ICD coding performance based on the partition-based mechanism.
arXiv Detail & Related papers (2022-11-15T07:11:01Z) - ICDBigBird: A Contextual Embedding Model for ICD Code Classification [71.58299917476195]
Contextual word embedding models have achieved state-of-the-art results in multiple NLP tasks.
ICDBigBird is a BigBird-based model which can integrate a Graph Convolutional Network (GCN)
Our experiments on a real-world clinical dataset demonstrate the effectiveness of our BigBird-based model on the ICD classification task.
arXiv Detail & Related papers (2022-04-21T20:59:56Z) - Few-Shot Electronic Health Record Coding through Graph Contrastive
Learning [64.8138823920883]
We seek to improve the performance for both frequent and rare ICD codes by using a contrastive graph-based EHR coding framework, CoGraph.
CoGraph learns similarities and dissimilarities between HEWE graphs from different ICD codes so that information can be transferred among them.
Two graph contrastive learning schemes, GSCL and GECL, exploit the HEWE graph structures so as to encode transferable features.
arXiv Detail & Related papers (2021-06-29T14:53:17Z) - TransICD: Transformer Based Code-wise Attention Model for Explainable
ICD Coding [5.273190477622007]
International Classification of Disease (ICD) coding procedure has been shown to be effective and crucial to the billing system in medical sector.
Currently, ICD codes are assigned to a clinical note manually which is likely to cause many errors.
In this project, we apply a transformer-based architecture to capture the interdependence among the tokens of a document and then use a code-wise attention mechanism to learn code-specific representations of the entire document.
arXiv Detail & Related papers (2021-03-28T05:34:32Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - From Extreme Multi-label to Multi-class: A Hierarchical Approach for
Automated ICD-10 Coding Using Phrase-level Attention [4.387302129801651]
Clinical coding is the task of assigning a set of alphanumeric codes, referred to as ICD (International Classification of Diseases), to a medical event based on the context captured in a clinical narrative.
We propose a novel approach for automatic ICD coding by reformulating the extreme multi-label problem into a simpler multi-class problem using a hierarchical solution.
arXiv Detail & Related papers (2021-02-18T03:19:14Z) - Inheritance-guided Hierarchical Assignment for Clinical Automatic
Diagnosis [50.15205065710629]
Clinical diagnosis, which aims to assign diagnosis codes for a patient based on the clinical note, plays an essential role in clinical decision-making.
We propose a novel framework to combine the inheritance-guided hierarchical assignment and co-occurrence graph propagation for clinical automatic diagnosis.
arXiv Detail & Related papers (2021-01-27T13:16:51Z) - Learning Contextualized Document Representations for Healthcare Answer
Retrieval [68.02029435111193]
Contextual Discourse Vectors (CDV) is a distributed document representation for efficient answer retrieval from long documents.
Our model leverages a dual encoder architecture with hierarchical LSTM layers and multi-task training to encode the position of clinical entities and aspects alongside the document discourse.
We show that our generalized model significantly outperforms several state-of-the-art baselines for healthcare passage ranking.
arXiv Detail & Related papers (2020-02-03T15:47:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.