論文の概要: AUTO3D: Novel view synthesis through unsupervisely learned variational
viewpoint and global 3D representation
- arxiv url: http://arxiv.org/abs/2007.06620v2
- Date: Thu, 27 Aug 2020 22:18:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 23:23:05.279687
- Title: AUTO3D: Novel view synthesis through unsupervisely learned variational
viewpoint and global 3D representation
- Title(参考訳): AUTO3D:未学習変分視点とグローバル3次元表現による新しい視点合成
- Authors: Xiaofeng Liu, Tong Che, Yiqun Lu, Chao Yang, Site Li, Jane You
- Abstract要約: 本稿では,ポーズ・インスペクションを伴わない単一の2次元画像から学習に基づく新規ビュー・シンセサイザーを目標とする。
本研究では,学習済みの相対的目的/回転と暗黙的グローバルな3次元表現を両立させるために,エンドツーエンドの訓練可能な条件変分フレームワークを構築した。
本システムでは,3次元再構成を明示的に行うことなく,暗黙的に3次元理解を行うことができる。
- 参考スコア(独自算出の注目度): 27.163052958878776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper targets on learning-based novel view synthesis from a single or
limited 2D images without the pose supervision. In the viewer-centered
coordinates, we construct an end-to-end trainable conditional variational
framework to disentangle the unsupervisely learned relative-pose/rotation and
implicit global 3D representation (shape, texture and the origin of
viewer-centered coordinates, etc.). The global appearance of the 3D object is
given by several appearance-describing images taken from any number of
viewpoints. Our spatial correlation module extracts a global 3D representation
from the appearance-describing images in a permutation invariant manner. Our
system can achieve implicitly 3D understanding without explicitly 3D
reconstruction. With an unsupervisely learned viewer-centered
relative-pose/rotation code, the decoder can hallucinate the novel view
continuously by sampling the relative-pose in a prior distribution. In various
applications, we demonstrate that our model can achieve comparable or even
better results than pose/3D model-supervised learning-based novel view
synthesis (NVS) methods with any number of input views.
- Abstract(参考訳): 本稿では,ポーズ・インスペクションを伴わない単一の2次元画像から学習に基づく新規ビュー・シンセサイザーを目標とする。
ビューア中心座標では、学習されていない相対的目的/回転と暗黙的なグローバルな3次元表現(形状、テクスチャ、ビューア中心座標の起源など)をアンハングリングするために、エンドツーエンドのトレーニング可能な条件変動フレームワークを構築する。
3dオブジェクトの全体像は、様々な視点から撮影された複数の外観記述画像によって与えられる。
空間相関モジュールは、出現記述画像から順列不変な方法で大域的な3次元表現を抽出する。
本システムでは,3次元再構築を行うことなく,暗黙的に3次元理解を行うことができる。
学習されていないビューア中心の相対配置/回転符号を用いて、デコーダは、前の分布で相対配置をサンプリングすることにより、新規ビューを連続的に幻覚することができる。
様々なアプリケーションにおいて,我々のモデルは,任意の入力ビューを持つ3次元モデル教師あり学習に基づく新規ビュー合成(NVS)手法と同等あるいはそれ以上の結果が得られることを示す。
関連論文リスト
- Free3D: Consistent Novel View Synthesis without 3D Representation [63.931920010054064]
Free3Dは単分子開集合新規ビュー合成(NVS)の簡易的高精度な方法である
同様のアプローチを採った他の作品と比較して,明快な3D表現に頼らずに大幅な改善が得られた。
論文 参考訳(メタデータ) (2023-12-07T18:59:18Z) - WildFusion: Learning 3D-Aware Latent Diffusion Models in View Space [77.92350895927922]
潜在拡散モデル(LDM)に基づく3次元画像合成の新しいアプローチであるWildFusionを提案する。
我々の3D対応LCMは、マルチビュー画像や3D幾何学を直接監督することなく訓練されている。
これにより、スケーラブルな3D認識画像合成と、Wild画像データから3Dコンテンツを作成するための有望な研究道が開かれる。
論文 参考訳(メタデータ) (2023-11-22T18:25:51Z) - Consistent-1-to-3: Consistent Image to 3D View Synthesis via Geometry-aware Diffusion Models [16.326276673056334]
Consistent-1-to-3は、この問題を著しく緩和する生成フレームワークである。
我々はNVSタスクを,(i)観察された領域を新しい視点に変換する,(ii)見えない領域を幻覚させる,の2つの段階に分解する。
本稿では,幾何制約を取り入れ,多視点情報をよりよく集約するための多視点アテンションとして,エピポラ誘導型アテンションを用いることを提案する。
論文 参考訳(メタデータ) (2023-10-04T17:58:57Z) - Structured 3D Features for Reconstructing Controllable Avatars [43.36074729431982]
パラメトリックな統計的メッシュ表面からサンプリングされた高密度な3次元点に画素整列画像特徴をプールする,新しい暗黙の3次元表現に基づくモデルであるStructured 3D Featuresを紹介する。
本研究では,S3Fモデルがモノクロ3D再構成やアルベド,シェーディング推定など,これまでの課題を超越していることを示す。
論文 参考訳(メタデータ) (2022-12-13T18:57:33Z) - Novel View Synthesis with Diffusion Models [56.55571338854636]
本稿では,3Dノベルビュー合成のための拡散モデルである3DiMを提案する。
単一のインプットビューを多くのビューで一貫したシャープな補完に変換することができる。
3DiMは、条件付けと呼ばれる新しい技術を使って、3D一貫性のある複数のビューを生成することができる。
論文 参考訳(メタデータ) (2022-10-06T16:59:56Z) - Vision Transformer for NeRF-Based View Synthesis from a Single Input
Image [49.956005709863355]
本稿では,グローバルな特徴と局所的な特徴を両立させ,表現力のある3D表現を実現することを提案する。
新たなビューを合成するために,学習した3次元表現に条件付き多層パーセプトロン(MLP)ネットワークを訓練し,ボリュームレンダリングを行う。
提案手法は,1つの入力画像のみから新しいビューを描画し,複数のオブジェクトカテゴリを1つのモデルで一般化することができる。
論文 参考訳(メタデータ) (2022-07-12T17:52:04Z) - Disentangled3D: Learning a 3D Generative Model with Disentangled
Geometry and Appearance from Monocular Images [94.49117671450531]
最先端の3D生成モデルは、合成に神経的な3Dボリューム表現を使用するGANである。
本稿では,単分子観察だけで物体の絡み合ったモデルを学ぶことができる3D GANを設計する。
論文 参考訳(メタデータ) (2022-03-29T22:03:18Z) - Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning
of 3D Pose [10.028521796737314]
本稿では,ラベル付きサンプルと非ラベル付きデータの集合から3次元オブジェクトのポーズを推定する学習の課題について検討する。
我々の主な貢献は学習フレームワークであるニューラルビュー合成とマッチングであり、3Dポーズアノテーションをラベル付けされたラベル付き画像から、確実に非ラベル付き画像に転送することができる。
論文 参考訳(メタデータ) (2021-10-27T06:53:53Z) - Stable View Synthesis [100.86844680362196]
安定ビュー合成(SVS)について紹介する。
SVSは、自由に分散された視点からシーンを描写するソースイメージのセットを与えられた場合、シーンの新たなビューを合成する。
SVSは3つの異なる実世界のデータセットに対して定量的かつ質的に、最先端のビュー合成手法より優れている。
論文 参考訳(メタデータ) (2020-11-14T07:24:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。