論文の概要: WildFusion: Learning 3D-Aware Latent Diffusion Models in View Space
- arxiv url: http://arxiv.org/abs/2311.13570v2
- Date: Fri, 12 Apr 2024 13:44:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-15 19:25:50.701178
- Title: WildFusion: Learning 3D-Aware Latent Diffusion Models in View Space
- Title(参考訳): WildFusion:ビュースペースにおける3D対応潜伏拡散モデル学習
- Authors: Katja Schwarz, Seung Wook Kim, Jun Gao, Sanja Fidler, Andreas Geiger, Karsten Kreis,
- Abstract要約: 潜在拡散モデル(LDM)に基づく3次元画像合成の新しいアプローチであるWildFusionを提案する。
我々の3D対応LCMは、マルチビュー画像や3D幾何学を直接監督することなく訓練されている。
これにより、スケーラブルな3D認識画像合成と、Wild画像データから3Dコンテンツを作成するための有望な研究道が開かれる。
- 参考スコア(独自算出の注目度): 77.92350895927922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern learning-based approaches to 3D-aware image synthesis achieve high photorealism and 3D-consistent viewpoint changes for the generated images. Existing approaches represent instances in a shared canonical space. However, for in-the-wild datasets a shared canonical system can be difficult to define or might not even exist. In this work, we instead model instances in view space, alleviating the need for posed images and learned camera distributions. We find that in this setting, existing GAN-based methods are prone to generating flat geometry and struggle with distribution coverage. We hence propose WildFusion, a new approach to 3D-aware image synthesis based on latent diffusion models (LDMs). We first train an autoencoder that infers a compressed latent representation, which additionally captures the images' underlying 3D structure and enables not only reconstruction but also novel view synthesis. To learn a faithful 3D representation, we leverage cues from monocular depth prediction. Then, we train a diffusion model in the 3D-aware latent space, thereby enabling synthesis of high-quality 3D-consistent image samples, outperforming recent state-of-the-art GAN-based methods. Importantly, our 3D-aware LDM is trained without any direct supervision from multiview images or 3D geometry and does not require posed images or learned pose or camera distributions. It directly learns a 3D representation without relying on canonical camera coordinates. This opens up promising research avenues for scalable 3D-aware image synthesis and 3D content creation from in-the-wild image data. See https://katjaschwarz.github.io/wildfusion for videos of our 3D results.
- Abstract(参考訳): 現代の3次元画像合成への学習に基づくアプローチは、生成した画像に対して高い光リアリズムと3次元一貫性のある視点変化を実現する。
既存のアプローチは共有正準空間のインスタンスを表す。
しかし、Wild内のデータセットでは、共有の標準システムは定義が難しいか、存在すらしない可能性がある。
この作業では、ビュースペースのインスタンスをモデル化し、ポーズ画像の必要性を軽減し、カメラの分布を学習する。
この設定では、既存のGANベースの手法は平坦な幾何学を生成する傾向にあり、分布カバレッジに苦慮している。
そこで我々は,潜在拡散モデル(LDM)に基づく3次元画像合成の新しいアプローチであるWildFusionを提案する。
まず、圧縮された潜在表現を推論するオートエンコーダを訓練し、画像の基盤となる3次元構造をキャプチャし、再構成だけでなく、新しいビュー合成を可能にする。
忠実な3次元表現を学習するために、単眼深度予測からの手がかりを利用する。
そして、3D対応潜伏空間における拡散モデルを訓練し、高品質な3D一貫性画像サンプルの合成を可能にする。
重要なことは、我々の3D対応LCMは、マルチビュー画像や3D幾何学を直接監督することなく訓練されており、ポーズ画像や学習ポーズ、カメラ分布を必要としないことである。
標準的なカメラ座標に頼ることなく、直接3D表現を学習する。
これにより、スケーラブルな3D認識画像合成と、Wild画像データから3Dコンテンツを作成するための有望な研究道が開かれる。
3D結果のビデオについては、https://katjaschwarz.github.io/wildfusionを参照してほしい。
関連論文リスト
- The More You See in 2D, the More You Perceive in 3D [32.578628729549145]
SAP3Dは、任意の数の未提示画像から3D再構成と新しいビュー合成を行うシステムである。
入力画像の数が増えるにつれて,提案手法の性能が向上することを示す。
論文 参考訳(メタデータ) (2024-04-04T17:59:40Z) - Isotropic3D: Image-to-3D Generation Based on a Single CLIP Embedding [16.50466940644004]
入力としてCLIPを埋め込んだ画像のみを取り込む画像から3D生成パイプラインであるIsotropic3Dを提案する。
等方性3Dは、最適化をSDS損失のみを静止させることで、方位角の等方性w.r.t.にすることができる。
論文 参考訳(メタデータ) (2024-03-15T15:27:58Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
実世界の3Dシーンの高速かつ詳細な再構築と生成を可能にする最初の拡散モデルを提案する。
まず、大きな3Dシーンを効率よく正確に表現できる新しいニューラルシーン表現であるIBプレーンを導入する。
第二に,2次元画像のみを用いて,この新たな3次元シーン表現の事前学習を行うためのデノイング拡散フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-05T19:00:45Z) - Free3D: Consistent Novel View Synthesis without 3D Representation [63.931920010054064]
Free3Dは単分子開集合新規ビュー合成(NVS)の簡易的高精度な方法である
同様のアプローチを採った他の作品と比較して,明快な3D表現に頼らずに大幅な改善が得られた。
論文 参考訳(メタデータ) (2023-12-07T18:59:18Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
本稿では,効率的な3D表現の獲得を容易にするために,新しいユニバーサル3D事前学習フレームワークを提案する。
PonderV2は、11の室内および屋外ベンチマークで最先端のパフォーマンスを達成したことで、その効果が示唆された。
論文 参考訳(メタデータ) (2023-10-12T17:59:57Z) - ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image
Collections [71.46546520120162]
単眼画像から動物体のような3D関節形状を推定することは、本質的に困難である。
本稿では,スパース画像コレクションから各物体の形状を再構築する自己教師型フレームワークARTIC3Dを提案する。
我々は、剛性部分変換の下で、描画された形状とテクスチャを微調整することで、現実的なアニメーションを作成する。
論文 参考訳(メタデータ) (2023-06-07T17:47:50Z) - SparseFusion: Distilling View-conditioned Diffusion for 3D
Reconstruction [26.165314261806603]
ニューラルレンダリングと確率的画像生成の最近の進歩を統一したスパースビュー3次元再構成手法であるスパースフュージョンを提案する。
既存のアプローチは、通常、再プロジェクションされた機能を持つニューラルレンダリングの上に構築されるが、目に見えない領域を生成したり、大きな視点の変化の下で不確実性に対処できない。
論文 参考訳(メタデータ) (2022-12-01T18:59:55Z) - 3inGAN: Learning a 3D Generative Model from Images of a Self-similar
Scene [34.2144933185175]
3inGANは、単一の自己相似3Dシーンの2D画像から訓練された無条件3D生成モデルである。
実地および合成源から得られた,様々なスケールと複雑さの半確率的な場面での結果を示す。
論文 参考訳(メタデータ) (2022-11-27T18:03:21Z) - DreamFusion: Text-to-3D using 2D Diffusion [52.52529213936283]
テキストと画像の合成の最近の進歩は、何十億もの画像と画像のペアで訓練された拡散モデルによって引き起こされている。
本研究では,事前訓練された2次元テキスト・ツー・イメージ拡散モデルを用いてテキスト・ツー・3次元合成を行うことにより,これらの制約を回避する。
提案手法では,3次元トレーニングデータや画像拡散モデルの変更は必要とせず,事前訓練した画像拡散モデルの有効性を実証する。
論文 参考訳(メタデータ) (2022-09-29T17:50:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。