論文の概要: Embedded Encoder-Decoder in Convolutional Networks Towards Explainable
AI
- arxiv url: http://arxiv.org/abs/2007.06712v1
- Date: Fri, 19 Jun 2020 15:49:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-19 04:59:11.490567
- Title: Embedded Encoder-Decoder in Convolutional Networks Towards Explainable
AI
- Title(参考訳): 説明可能なAIを目指す畳み込みネットワークにおける埋め込みエンコーダデコーダ
- Authors: Amirhossein Tavanaei
- Abstract要約: 本稿では,刺激の視覚的特徴を表す新しい説明可能な畳み込みニューラルネットワーク(XCNN)を提案する。
CIFAR-10, Tiny ImageNet, MNISTデータセットを用いた実験結果から, 提案アルゴリズム (XCNN) をCNNで説明可能なものにすることに成功した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding intermediate layers of a deep learning model and discovering
the driving features of stimuli have attracted much interest, recently.
Explainable artificial intelligence (XAI) provides a new way to open an AI
black box and makes a transparent and interpretable decision. This paper
proposes a new explainable convolutional neural network (XCNN) which represents
important and driving visual features of stimuli in an end-to-end model
architecture. This network employs encoder-decoder neural networks in a CNN
architecture to represent regions of interest in an image based on its
category. The proposed model is trained without localization labels and
generates a heat-map as part of the network architecture without extra
post-processing steps. The experimental results on the CIFAR-10, Tiny ImageNet,
and MNIST datasets showed the success of our algorithm (XCNN) to make CNNs
explainable. Based on visual assessment, the proposed model outperforms the
current algorithms in class-specific feature representation and interpretable
heatmap generation while providing a simple and flexible network architecture.
The initial success of this approach warrants further study to enhance weakly
supervised localization and semantic segmentation in explainable frameworks.
- Abstract(参考訳): 近年,深層学習モデルの中間層理解と刺激の駆動特性の発見が注目されている。
説明可能な人工知能(XAI)は、AIブラックボックスを開く新しい方法を提供し、透明で解釈可能な決定をする。
本稿では、エンド・ツー・エンドのモデルアーキテクチャにおいて、刺激の視覚的特徴を重要かつ促進する新しい説明可能な畳み込みニューラルネットワーク(xcnn)を提案する。
このネットワークは、cnnアーキテクチャにおいてエンコーダ-デコーダニューラルネットワークを使用して、そのカテゴリに基づいて画像に対する関心領域を表現する。
提案モデルはローカライズラベルなしでトレーニングされ、余分な後処理ステップなしでネットワークアーキテクチャの一部としてヒートマップを生成する。
CIFAR-10, Tiny ImageNet, MNISTデータセットを用いた実験結果から, 提案アルゴリズム (XCNN) をCNNで説明可能なものにすることに成功した。
視覚的評価に基づいて,提案手法は,単純で柔軟なネットワークアーキテクチャを提供しながら,クラス固有の特徴表現と解釈可能なヒートマップ生成において,現在のアルゴリズムを上回っている。
このアプローチの最初の成功は、説明可能なフレームワークにおける弱教師付きローカライゼーションとセマンティックセグメンテーションを強化するためのさらなる研究を保証している。
関連論文リスト
- Moving Object Proposals with Deep Learned Optical Flow for Video Object
Segmentation [1.551271936792451]
我々は、移動オブジェクト提案(MOP)を得るために、ニューラルネットワークの最先端アーキテクチャを提案する。
まず、教師なし畳み込みニューラルネットワーク(UnFlow)をトレーニングし、光学的フロー推定を生成する。
次に、光学フローネットの出力を、完全に畳み込みのSegNetモデルに描画する。
論文 参考訳(メタデータ) (2024-02-14T01:13:55Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - Visual Feature Encoding for GNNs on Road Networks [14.274582421372308]
視覚バックボーンネットワークとグラフニューラルネットワークを組み合わせたアーキテクチャを提案する。
衛星画像の符号化により,オープンストリートマップ道路網上で道路型分類タスクを行う。
アーキテクチャによりさらに微調整が可能となり,事前学習により伝達学習のアプローチが評価される。
論文 参考訳(メタデータ) (2022-03-02T15:37:50Z) - CondenseNeXt: An Ultra-Efficient Deep Neural Network for Embedded
Systems [0.0]
畳み込みニューラルネットワーク(英: Convolutional Neural Network, CNN)は、画像センサが捉えた視覚画像の分析に広く用いられているディープニューラルネットワーク(DNN)のクラスである。
本稿では,組込みシステム上でのリアルタイム推論のために,既存のCNNアーキテクチャの性能を改善するために,深層畳み込みニューラルネットワークアーキテクチャの新しい変種を提案する。
論文 参考訳(メタデータ) (2021-12-01T18:20:52Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
既存のニューラルアーキテクチャの複数の段階でノイズを追加すると同時に、この付加ノイズに対して堅牢であるように学習する新しいトレーニングスキームを提案する。
このアーキテクチャは、SDNN(Self-Denoising Neural Network)と呼ばれ、現代の畳み込みニューラルネットワークに容易に適用できます。
論文 参考訳(メタデータ) (2021-10-26T03:28:36Z) - Knowledge Distillation By Sparse Representation Matching [107.87219371697063]
本稿では,一方の畳み込みネットワーク(cnn)から他方へ,スパース表現を用いて中間知識を伝達するスパース表現マッチング(srm)を提案する。
勾配降下を利用して効率的に最適化し、任意のCNNにプラグアンドプレイで統合できるニューラルプロセッシングブロックとして定式化します。
実験の結果,教師と生徒のネットワーク間のアーキテクチャの違いに頑健であり,複数のデータセットにまたがる他のkd技術よりも優れていた。
論文 参考訳(メタデータ) (2021-03-31T11:47:47Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
本稿では,画素レベルの予測を基本的側面,すなわち,技術の現状を推し進める新たなアプローチを提案する。
構造化されたマルチスケール機能学習と融合。
本論文では,マルチスケール表現を原理的に学習・融合するための新しいアテンテンションゲート条件ランダムフィールド(AG-CRFs)モデルに基づく確率的グラフアテンションネットワーク構造を提案する。
論文 参考訳(メタデータ) (2021-01-08T04:14:29Z) - An Information-theoretic Visual Analysis Framework for Convolutional
Neural Networks [11.15523311079383]
CNNモデルから抽出可能なデータを整理するデータモデルを提案する。
次に、異なる状況下でエントロピーを計算する2つの方法を提案する。
我々は,モデル内の情報変化量をインタラクティブに探索する視覚解析システムCNNSlicerを開発した。
論文 参考訳(メタデータ) (2020-05-02T21:36:50Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。