論文の概要: 2D Qubit Placement of Quantum Circuits using LONGPATH
- arxiv url: http://arxiv.org/abs/2007.06804v1
- Date: Tue, 14 Jul 2020 04:09:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-10 02:17:42.172354
- Title: 2D Qubit Placement of Quantum Circuits using LONGPATH
- Title(参考訳): ロングパスを用いた量子回路の2次元量子ビット配置
- Authors: Mrityunjay Ghosh, Nivedita Dey, Debdeep Mitra, Amlan Chakrabarti
- Abstract要約: 任意の量子回路におけるSWAPゲートの数を最適化する2つのアルゴリズムが提案されている。
提案手法は1Dおよび2D NTCアーキテクチャにおけるSWAPゲート数を大幅に削減する。
- 参考スコア(独自算出の注目度): 1.6631602844999722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In order to achieve speedup over conventional classical computing for finding
solution of computationally hard problems, quantum computing was introduced.
Quantum algorithms can be simulated in a pseudo quantum environment, but
implementation involves realization of quantum circuits through physical
synthesis of quantum gates. This requires decomposition of complex quantum
gates into a cascade of simple one qubit and two qubit gates. The
methodological framework for physical synthesis imposes a constraint regarding
placement of operands (qubits) and operators. If physical qubits can be placed
on a grid, where each node of the grid represents a qubit then quantum gates
can only be operated on adjacent qubits, otherwise SWAP gates must be inserted
to convert non-Linear Nearest Neighbor architecture to Linear Nearest Neighbor
architecture. Insertion of SWAP gates should be made optimal to reduce
cumulative cost of physical implementation. A schedule layout generation is
required for placement and routing apriori to actual implementation. In this
paper, two algorithms are proposed to optimize the number of SWAP gates in any
arbitrary quantum circuit. The first algorithm is intended to start with
generation of an interaction graph followed by finding the longest path
starting from the node with maximum degree. The second algorithm optimizes the
number of SWAP gates between any pair of non-neighbouring qubits. Our proposed
approach has a significant reduction in number of SWAP gates in 1D and 2D NTC
architecture.
- Abstract(参考訳): 計算困難問題の解を求める従来の古典的計算よりも高速化を実現するため、量子コンピューティングが導入された。
量子アルゴリズムは擬似量子環境でシミュレートできるが、実装には量子ゲートの物理合成による量子回路の実現が含まれる。
これは複素量子ゲートを単純な1量子ビットと2量子ビットゲートのカスケードに分解する必要がある。
物理合成の方法論的枠組みは、オペランド(量子ビット)と演算子の配置に関する制約を課している。
格子の各ノードが量子ビットを表す格子上に物理量子ビットを置くことができれば、隣接する量子ビット上でのみ量子ゲートを操作でき、そうでなければ、非線形近接近傍アーキテクチャを線形近接近傍アーキテクチャに変換するためにSWAPゲートを挿入しなければならない。
スワップゲートの挿入は物理的実装の累積コストを減らすために最適である。
実際の実装への配置とルーティングにはスケジュールレイアウト生成が必要である。
本稿では、任意の量子回路におけるSWAPゲート数を最適化する2つのアルゴリズムを提案する。
最初のアルゴリズムは、相互作用グラフの生成から始まり、次にノードから始まる最も長い経路を最大度で見つけることを意図している。
第2のアルゴリズムは、任意の非隣接量子ビット間のSWAPゲート数を最適化する。
提案手法は1Dおよび2D NTCアーキテクチャにおけるSWAPゲート数を大幅に削減する。
関連論文リスト
- SWAP-less Implementation of Quantum Algorithms [0.0]
本稿では,接続性に制限のあるデバイスにアルゴリズムを実装するために,パリティ量子情報のフローを追跡するフォーマリズムを提案する。
我々は、エンタングゲートが量子状態を操作するだけでなく、量子情報の伝達にも活用できるという事実を活用している。
論文 参考訳(メタデータ) (2024-08-20T14:51:00Z) - Route-Forcing: Scalable Quantum Circuit Mapping for Scalable Quantum Computing Architectures [41.39072840772559]
Route-Forcingは量子回路マッピングアルゴリズムで、平均スピードアップが3.7Times$であることを示している。
本稿では、最先端のスケーラブルな手法と比較して平均3.7倍の高速化を示す量子回路マッピングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T14:21:41Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
この研究は、量子回路のコンパイルマッピング問題における臨界サブルーチンとして、マルチキュービットパスフィンディングに焦点を当てている。
本稿では,回路SWAPゲート深さに対して量子ハードウェア上で量子ビットを最適にナビゲートする二進整数線形計画法を用いてモデル化したアルゴリズムを提案する。
我々は、様々な量子ハードウェアレイアウトのアルゴリズムをベンチマークし、計算ランタイム、解SWAP深さ、累積SWAPゲート誤差率などの特性を評価した。
論文 参考訳(メタデータ) (2024-05-29T05:59:15Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
CFD問題を解決するための現在の量子アルゴリズムは、単一の量子回路と、場合によっては格子ベースの方法を用いる。
量子格子ボルツマン法(QLBM)を用いた新しい多重回路アルゴリズムを提案する。
この問題は2次元ナビエ・ストークス方程式の流動関数-渦性定式化として鋳造され、2次元蓋駆動キャビティフローで検証および試験された。
論文 参考訳(メタデータ) (2024-01-20T15:32:01Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - One Gate Scheme to Rule Them All: Introducing a Complex Yet Reduced Instruction Set for Quantum Computing [8.478982715648547]
$XX+YY$結合を持つキュービットのスキームは、単一キュービットゲートまでの任意の2キュービットゲートを実現する。
一般的な$n$-qubitゲート合成、量子ボリューム、キュービットルーティングなど、様々な応用において顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-12-09T19:30:31Z) - Iterative Qubit Coupled Cluster using only Clifford circuits [36.136619420474766]
古典的に容易に生成できる理想的な状態準備プロトコルを特徴付けることができる。
繰り返し量子ビット結合クラスタ(iQCC)の変種を導入して,これらの要件を満たす手法を提案する。
本研究では, チタン系化合物Ti(C5H5)(CH3)3と (20, 20) 活性空間の複雑な系に研究を拡張した。
論文 参考訳(メタデータ) (2022-11-18T20:31:10Z) - Approximate encoding of quantum states using shallow circuits [0.0]
量子シミュレーションとアルゴリズムの一般的な要件は、2量子ゲートのシーケンスを通して複雑な状態を作成することである。
ここでは、限られた数のゲートを用いて、ターゲット状態の近似符号化を作成することを目的とする。
我々の研究は、局所ゲートを用いて目標状態を作成する普遍的な方法を提供し、既知の戦略よりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2022-06-30T18:00:04Z) - Moving Quantum States without SWAP via Intermediate Higher Dimensional
Qudits [3.5450828190071646]
本稿では,SWAP操作を使わずに移動量子状態の新たな定式化を導入する。
量子状態の量子ビットによる移動は、一時的な中間クエット状態の採用によって達成されている。
論文 参考訳(メタデータ) (2021-06-16T19:21:53Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
変分量子アルゴリズムは計算的に難しい問題を解くのに有望であると考えられている。
本稿では,QAOAの回路深度依存性能について実験的に検討する。
この結果から, 連続ゲートセットの使用は, 短期量子コンピュータの影響を拡大する上で重要な要素である可能性が示唆された。
論文 参考訳(メタデータ) (2020-05-11T17:20:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。