論文の概要: SWAP-less Implementation of Quantum Algorithms
- arxiv url: http://arxiv.org/abs/2408.10907v1
- Date: Tue, 20 Aug 2024 14:51:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 13:15:27.888045
- Title: SWAP-less Implementation of Quantum Algorithms
- Title(参考訳): SWAPによる量子アルゴリズムの実装
- Authors: Berend Klaver, Stefan Rombouts, Michael Fellner, Anette Messinger, Kilian Ender, Katharina Ludwig, Wolfgang Lechner,
- Abstract要約: 本稿では,接続性に制限のあるデバイスにアルゴリズムを実装するために,パリティ量子情報のフローを追跡するフォーマリズムを提案する。
我々は、エンタングゲートが量子状態を操作するだけでなく、量子情報の伝達にも活用できるという事実を活用している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a formalism based on tracking the flow of parity quantum information to implement algorithms on devices with limited connectivity without qubit overhead, SWAP operations or shuttling. Instead, we leverage the fact that entangling gates not only manipulate quantum states but can also be exploited to transport quantum information. We demonstrate the effectiveness of this method by applying it to the quantum Fourier transform (QFT) and the Quantum Approximate Optimization Algorithm (QAOA) with $n$ qubits. This improves upon all state-of-the-art implementations of the QFT on a linear nearest-neighbor architecture, resulting in a total circuit depth of ${5n-3}$ and requiring ${n^2-1}$ CNOT gates. For the QAOA, our method outperforms SWAP networks, which are currently the most efficient implementation of the QAOA on a linear architecture. We further demonstrate the potential to balance qubit count against circuit depth by implementing the QAOA on twice the number of qubits using bi-linear connectivity, which approximately halves the circuit depth.
- Abstract(参考訳): クビットオーバーヘッドやSWAP操作,シャットリングを伴わない,接続性に制限のあるデバイスにアルゴリズムを実装するために,パリティ量子情報のフローを追跡するフォーマリズムを提案する。
代わりに、エンタングゲートが量子状態を操作するだけでなく、量子情報を伝達するために利用することもできるという事実を活用します。
量子フーリエ変換(QFT)と量子近似最適化アルゴリズム(QAOA)に$n$ qubitsで適用することで,本手法の有効性を示す。
これにより、QFTの隣り合う線形アーキテクチャ上での最先端実装は改善され、回路深さは$5n-3}$となり、CNOTゲートは${n^2-1}$である。
QAOAでは,線形アーキテクチャ上でのQAOAの最も効率的な実装であるSWAPネットワークよりも優れている。
さらに、回路深さの約半分を占める双方向接続を用いて、QAOAを2倍の量子ビット数で実装することにより、回路深さに対する量子ビットカウントのバランスをとる可能性を示す。
関連論文リスト
- Route-Forcing: Scalable Quantum Circuit Mapping for Scalable Quantum Computing Architectures [41.39072840772559]
Route-Forcingは量子回路マッピングアルゴリズムで、平均スピードアップが3.7Times$であることを示している。
本稿では、最先端のスケーラブルな手法と比較して平均3.7倍の高速化を示す量子回路マッピングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T14:21:41Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
この研究は、量子回路のコンパイルマッピング問題における臨界サブルーチンとして、マルチキュービットパスフィンディングに焦点を当てている。
本稿では,回路SWAPゲート深さに対して量子ハードウェア上で量子ビットを最適にナビゲートする二進整数線形計画法を用いてモデル化したアルゴリズムを提案する。
我々は、様々な量子ハードウェアレイアウトのアルゴリズムをベンチマークし、計算ランタイム、解SWAP深さ、累積SWAPゲート誤差率などの特性を評価した。
論文 参考訳(メタデータ) (2024-05-29T05:59:15Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - A two-circuit approach to reducing quantum resources for the quantum lattice Boltzmann method [41.66129197681683]
CFD問題を解決するための現在の量子アルゴリズムは、単一の量子回路と、場合によっては格子ベースの方法を用いる。
量子格子ボルツマン法(QLBM)を用いた新しい多重回路アルゴリズムを提案する。
この問題は2次元ナビエ・ストークス方程式の流動関数-渦性定式化として鋳造され、2次元蓋駆動キャビティフローで検証および試験された。
論文 参考訳(メタデータ) (2024-01-20T15:32:01Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Optimized fermionic SWAP networks with equivalent circuit averaging for
QAOA [2.3362993651992863]
量子近似最適化アルゴリズム(QAOA)のためのフェミオンSWAPネットワークの実行を最適化する。
等価回路平均化(Equivalent Circuit Averaging)を導入し,量子回路コンパイルにおける自由度をランダム化する。
超伝導量子プロセッサ上の4つのトランスモン量子ビット上での深さp = 1のQAOAの誤差(経時変化距離)を平均60%低減する。
論文 参考訳(メタデータ) (2021-11-08T15:32:05Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
量子回路をキューネットワークとしてモデル化することを提案する。
提案手法はスケーラビリティが高く,大規模量子回路のコンパイルに必要となる潜在的な速度と精度を有する。
論文 参考訳(メタデータ) (2021-06-26T10:55:52Z) - Moving Quantum States without SWAP via Intermediate Higher Dimensional
Qudits [3.5450828190071646]
本稿では,SWAP操作を使わずに移動量子状態の新たな定式化を導入する。
量子状態の量子ビットによる移動は、一時的な中間クエット状態の採用によって達成されている。
論文 参考訳(メタデータ) (2021-06-16T19:21:53Z) - Using Reinforcement Learning to Perform Qubit Routing in Quantum
Compilers [0.0]
深層Q-ラーニングパラダイムの修正版を用いたキュービットルーティング手法を提案する。
このシステムは、現在利用可能な最も先進的な量子コンパイラの2つから、キュービットルーティング手順を上回ります。
論文 参考訳(メタデータ) (2020-07-31T10:57:24Z) - 2D Qubit Placement of Quantum Circuits using LONGPATH [1.6631602844999722]
任意の量子回路におけるSWAPゲートの数を最適化する2つのアルゴリズムが提案されている。
提案手法は1Dおよび2D NTCアーキテクチャにおけるSWAPゲート数を大幅に削減する。
論文 参考訳(メタデータ) (2020-07-14T04:09:52Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
変分量子アルゴリズムは計算的に難しい問題を解くのに有望であると考えられている。
本稿では,QAOAの回路深度依存性能について実験的に検討する。
この結果から, 連続ゲートセットの使用は, 短期量子コンピュータの影響を拡大する上で重要な要素である可能性が示唆された。
論文 参考訳(メタデータ) (2020-05-11T17:20:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。