TANGO: A Robust Qubit Mapping Algorithm via Two-Stage Search and Bidirectional Look
- URL: http://arxiv.org/abs/2503.07331v1
- Date: Mon, 10 Mar 2025 13:44:16 GMT
- Title: TANGO: A Robust Qubit Mapping Algorithm via Two-Stage Search and Bidirectional Look
- Authors: Kang Xu, Yukun Wang, Dandan Li,
- Abstract summary: Current quantum devices lack full qubit connectivity, making it difficult to directly execute logical circuits on quantum devices.<n>We propose the TANGO algorithm, which balances the impact of qubit mapping on both mapped and unmapped nodes.<n>We show that the algorithm achieves multi-objective co-optimization of gate count and circuit depth across various benchmarks and quantum devices.
- Score: 7.064817742048067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current quantum devices typically lack full qubit connectivity, making it difficult to directly execute logical circuits on quantum devices. This limitation necessitates quantum circuit mapping algorithms to insert SWAP gates, dynamically remapping logical qubits to physical qubits and transforming logical circuits into physical circuits that comply with device connectivity constraints. However, the insertion of SWAP gates increases both the gate count and circuit depth, ultimately reducing the fidelity of quantum algorithms. To achieve a balanced optimization of these two objectives, we propose the TANGO algorithm. By incorporating a layer-weight allocation strategy, the algorithm first formulates an evaluation function that balances the impact of qubit mapping on both mapped and unmapped nodes, thereby enhancing the quality of the initial mapping. Next, we design an innovative two-stage routing algorithm that prioritizes the number of executable gates as the primary evaluation metric while also considering quantum gate distance, circuit depth, and a novel bidirectional-look SWAP strategy, which optimizes SWAP gate selection in conjunction with preceding gates, improving the effectiveness of the mapping algorithm. Finally, by integrating advanced quantum gate optimization techniques, the algorithm's overall performance is further enhanced. Experimental results demonstrate that, compared to state-of-the-art methods, the proposed algorithm achieves multi-objective co-optimization of gate count and circuit depth across various benchmarks and quantum devices, exhibiting significant performance advantages.
Related papers
- HAIL: An Efficient Iterative Algorithm for Qubit Mapping via Layer-Weight Assignment and Search Space Reduction [7.698997402561804]
Current quantum devices only support interactions between physical qubits and a limited number of neighboring qubits.
To execute the circuit, SWAP gates must be inserted to adjust the mapping relationships between qubits.
This paper proposes HAIL, an efficient iterative qubit mapping algorithm to minimize additional SWAP gates.
arXiv Detail & Related papers (2025-02-11T13:21:33Z) - SWAP-less Implementation of Quantum Algorithms [0.0]
We present a formalism based on tracking the flow of parity quantum information to implement algorithms on devices with limited connectivity.
We leverage the fact that entangling gates not only manipulate quantum states but can also be exploited to transport quantum information.
arXiv Detail & Related papers (2024-08-20T14:51:00Z) - Route-Forcing: Scalable Quantum Circuit Mapping for Scalable Quantum Computing Architectures [41.39072840772559]
Route-Forcing is a quantum circuit mapping algorithm that shows an average speedup of $3.7times$.
We present a quantum circuit mapping algorithm that shows an average speedup of $3.7times$ compared to the state-of-the-art scalable techniques.
arXiv Detail & Related papers (2024-07-24T14:21:41Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
This work focuses on multi-qubit pathfinding as a critical subroutine within the quantum circuit compilation mapping problem.
We introduce an algorithm, modelled using binary integer linear programming, that navigates qubits on quantum hardware optimally with respect to circuit SWAP-gate depth.
We have benchmarked the algorithm across a variety of quantum hardware layouts, assessing properties such as computational runtimes, solution SWAP depths, and accumulated SWAP-gate error rates.
arXiv Detail & Related papers (2024-05-29T05:59:15Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Algorithm-Oriented Qubit Mapping for Variational Quantum Algorithms [3.990724104767043]
Quantum algorithms implemented on near-term devices require qubit mapping due to noise and limited qubit connectivity.
We propose a strategy called algorithm-oriented qubit mapping (AOQMAP) that aims to bridge the gap between exact and scalable mapping methods.
arXiv Detail & Related papers (2023-10-15T13:18:06Z) - Efficient DCQO Algorithm within the Impulse Regime for Portfolio
Optimization [41.94295877935867]
We propose a faster digital quantum algorithm for portfolio optimization using the digitized-counterdiabatic quantum optimization (DCQO) paradigm.
Our approach notably reduces the circuit depth requirement of the algorithm and enhances the solution accuracy, making it suitable for current quantum processors.
We experimentally demonstrate the advantages of our protocol using up to 20 qubits on an IonQ trapped-ion quantum computer.
arXiv Detail & Related papers (2023-08-29T17:53:08Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - 2D Qubit Placement of Quantum Circuits using LONGPATH [1.6631602844999722]
Two algorithms are proposed to optimize the number of SWAP gates in any arbitrary quantum circuit.
Our approach has a significant reduction in number of SWAP gates in 1D and 2D NTC architecture.
arXiv Detail & Related papers (2020-07-14T04:09:52Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.