One Gate Scheme to Rule Them All: Introducing a Complex Yet Reduced Instruction Set for Quantum Computing
- URL: http://arxiv.org/abs/2312.05652v2
- Date: Mon, 13 May 2024 08:17:11 GMT
- Title: One Gate Scheme to Rule Them All: Introducing a Complex Yet Reduced Instruction Set for Quantum Computing
- Authors: Jianxin Chen, Dawei Ding, Weiyuan Gong, Cupjin Huang, Qi Ye,
- Abstract summary: Scheme for qubits with $XX+YY$ coupling realizes any two-qubit gate up to single-qubit gates.
We observe marked improvements across various applications, including generic $n$-qubit gate synthesis, quantum volume, and qubit routing.
- Score: 8.478982715648547
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The design and architecture of a quantum instruction set are paramount to the performance of a quantum computer. This work introduces a gate scheme for qubits with $XX+YY$ coupling that directly and efficiently realizes any two-qubit gate up to single-qubit gates. First, this scheme enables high-fidelity execution of quantum operations and achieves minimum possible gate times. Second, since the scheme spans the entire $\textbf{SU}(4)$ group of two-qubit gates, we can use it to attain the optimal two-qubit gate count for algorithm implementation. These two advantages in synergy give rise to a quantum Complex yet Reduced Instruction Set Computer (CRISC). Though the gate scheme is compact, it supports a comprehensive array of quantum operations. This may seem paradoxical but is realizable due to the fundamental differences between quantum and classical computer architectures. Using our gate scheme, we observe marked improvements across various applications, including generic $n$-qubit gate synthesis, quantum volume, and qubit routing. Furthermore, the proposed scheme also realizes a gate locally equivalent to the commonly used CNOT gate with a gate time of $\frac{\pi}{2g}$, where $g$ is the two-qubit coupling. The AshN scheme is also completely impervious to $ZZ$ error, the main coherent error in transversely coupled systems, as the control parameters implementing the gates can be easily adjusted to take the $ZZ$ term into account.
Related papers
- Efficient compilation of quantum circuits using multi-qubit gates [0.0]
We present a compilation scheme which implements a general-circuit decomposition to a sequence of Ising-type, long-range, multi-qubit entangling gates.
We numerically test our compilation and show that, compared to conventional realizations with two-qubit gates, our compilations improves the logarithm of quantum volume by $20%$ to $25%$.
arXiv Detail & Related papers (2025-01-28T19:08:13Z) - Parametrized multiqubit gate design for neutral-atom based quantum platforms [0.0]
A clever choice and design of gate sets can reduce the depth of a quantum circuit, and can improve the quality of the solution one obtains from a quantum algorithm.
Parametrized gates in particular have found use in both near-term algorithms and circuit compilation.
arXiv Detail & Related papers (2024-11-29T15:47:19Z) - All You Need is pi: Quantum Computing with Hermitian Gates [0.0]
We show that any single-qubit operator may be implemented as two Hermitian gates, and thus a purely Hermitian universal set is possible.
This implementation can be used to prepare high fidelity single-qubit states in the presence of amplitude errors.
We show that a gate set comprised of $pi$ rotations about two fixed axes, along with the CNOT gate, is universal for quantum computation.
arXiv Detail & Related papers (2024-02-19T18:36:09Z) - Error-corrected Hadamard gate simulated at the circuit level [42.002147097239444]
We simulate the logical Hadamard gate in the surface code under a circuit-level noise model.
Our paper is the first to do this for a unitary gate on a quantum error-correction code.
arXiv Detail & Related papers (2023-12-18T19:00:00Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Extensive characterization of a family of efficient three-qubit gates at
the coherence limit [0.4471952592011114]
We implement a three-qubit gate by simultaneously applying two-qubit operations.
We generate two classes of entangled states, the GHZ and W states, by applying the new gate only once.
We analyze the experimental and statistical errors on the fidelity of the gates and of the target states.
arXiv Detail & Related papers (2022-07-06T19:42:29Z) - Software mitigation of coherent two-qubit gate errors [55.878249096379804]
Two-qubit gates are important components of quantum computing.
But unwanted interactions between qubits (so-called parasitic gates) can degrade the performance of quantum applications.
We present two software methods to mitigate parasitic two-qubit gate errors.
arXiv Detail & Related papers (2021-11-08T17:37:27Z) - Approaching the theoretical limit in quantum gate decomposition [0.0]
We propose a novel numerical approach to decompose general quantum programs in terms of single- and two-qubit quantum gates with a $CNOT$ gate count.
Our approach is based on a sequential optimization of parameters related to the single-qubit rotation gates involved in a pre-designed quantum circuit used for the decomposition.
arXiv Detail & Related papers (2021-09-14T15:36:22Z) - Quantum simulation of $\phi^4$ theories in qudit systems [53.122045119395594]
We discuss the implementation of quantum algorithms for lattice $Phi4$ theory on circuit quantum electrodynamics (cQED) system.
The main advantage of qudit systems is that its multi-level characteristic allows the field interaction to be implemented only with diagonal single-qudit gates.
arXiv Detail & Related papers (2021-08-30T16:30:33Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.