Contrastive Learning with Consistent Representations
- URL: http://arxiv.org/abs/2302.01541v2
- Date: Wed, 4 Sep 2024 19:44:26 GMT
- Title: Contrastive Learning with Consistent Representations
- Authors: Zihu Wang, Yu Wang, Zhuotong Chen, Hanbin Hu, Peng Li,
- Abstract summary: This paper proposes Contrastive Learning with Consistent Representations CoCor.
At the heart of CoCor is a novel consistency metric termed DA consistency.
Experimental results demonstrate that CoCor notably enhances the generalizability and transferability of learned representations.
- Score: 8.364383223740097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Contrastive learning demonstrates great promise for representation learning. Data augmentations play a critical role in contrastive learning by providing informative views of the data without necessitating explicit labels. Nonetheless, the efficacy of current methodologies heavily hinges on the quality of employed data augmentation (DA) functions, often chosen manually from a limited set of options. While exploiting diverse data augmentations is appealing, the complexities inherent in both DAs and representation learning can lead to performance deterioration. Addressing this challenge and facilitating the systematic incorporation of diverse data augmentations, this paper proposes Contrastive Learning with Consistent Representations CoCor. At the heart of CoCor is a novel consistency metric termed DA consistency. This metric governs the mapping of augmented input data to the representation space, ensuring that these instances are positioned optimally in a manner consistent with the applied intensity of the DA. Moreover, we propose to learn the optimal mapping locations as a function of DA, all while preserving a desired monotonic property relative to DA intensity. Experimental results demonstrate that CoCor notably enhances the generalizability and transferability of learned representations in comparison to baseline methods.
Related papers
- LAC: Graph Contrastive Learning with Learnable Augmentation in Continuous Space [16.26882307454389]
We introduce LAC, a graph contrastive learning framework with learnable data augmentation in an orthogonal continuous space.
To capture the representative information in the graph data during augmentation, we introduce a continuous view augmenter.
We propose an information-theoretic principle named InfoBal and introduce corresponding pretext tasks.
Our experimental results show that LAC significantly outperforms the state-of-the-art frameworks.
arXiv Detail & Related papers (2024-10-20T10:47:15Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
Data augmentation (DA) is a crucial technique for enhancing the sample efficiency of visual reinforcement learning (RL) algorithms.
It remains unclear which attributes of DA account for its effectiveness in achieving sample-efficient visual RL.
This work conducts comprehensive experiments to assess the impact of DA's attributes on its efficacy.
arXiv Detail & Related papers (2023-05-25T15:46:20Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
Underlying data structures are often exploited to improve the solution of learning tasks.
Data augmentation induces these symmetries during training by applying multiple transformations to the input data.
This work tackles these issues by automatically adapting the data augmentation while solving the learning task.
arXiv Detail & Related papers (2022-09-29T18:11:01Z) - Improving GANs with A Dynamic Discriminator [106.54552336711997]
We argue that a discriminator with an on-the-fly adjustment on its capacity can better accommodate such a time-varying task.
A comprehensive empirical study confirms that the proposed training strategy, termed as DynamicD, improves the synthesis performance without incurring any additional cost or training objectives.
arXiv Detail & Related papers (2022-09-20T17:57:33Z) - Robust Representation Learning via Perceptual Similarity Metrics [18.842322467828502]
Contrastive Input Morphing (CIM) is a representation learning framework that learns input-space transformations of the data.
We show that CIM is complementary to other mutual information-based representation learning techniques.
arXiv Detail & Related papers (2021-06-11T21:45:44Z) - Heterogeneous Contrastive Learning: Encoding Spatial Information for
Compact Visual Representations [183.03278932562438]
This paper presents an effective approach that adds spatial information to the encoding stage to alleviate the learning inconsistency between the contrastive objective and strong data augmentation operations.
We show that our approach achieves higher efficiency in visual representations and thus delivers a key message to inspire the future research of self-supervised visual representation learning.
arXiv Detail & Related papers (2020-11-19T16:26:25Z) - CoDA: Contrast-enhanced and Diversity-promoting Data Augmentation for
Natural Language Understanding [67.61357003974153]
We propose a novel data augmentation framework dubbed CoDA.
CoDA synthesizes diverse and informative augmented examples by integrating multiple transformations organically.
A contrastive regularization objective is introduced to capture the global relationship among all the data samples.
arXiv Detail & Related papers (2020-10-16T23:57:03Z) - Learning Unbiased Representations via R\'enyi Minimization [13.61565693336172]
We propose an adversarial algorithm to learn unbiased representations via the Hirschfeld-Gebel-Renyi (HGR) maximal correlation coefficient.
We empirically evaluate and compare our approach and demonstrate significant improvements over existing works in the field.
arXiv Detail & Related papers (2020-09-07T15:48:24Z) - Spectrum-Guided Adversarial Disparity Learning [52.293230153385124]
We propose a novel end-to-end knowledge directed adversarial learning framework.
It portrays the class-conditioned intraclass disparity using two competitive encoding distributions and learns the purified latent codes by denoising learned disparity.
The experiments on four HAR benchmark datasets demonstrate the robustness and generalization of our proposed methods over a set of state-of-the-art.
arXiv Detail & Related papers (2020-07-14T05:46:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.