論文の概要: Modeling Financial Time Series using LSTM with Trainable Initial Hidden
States
- arxiv url: http://arxiv.org/abs/2007.06848v1
- Date: Tue, 14 Jul 2020 06:36:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 15:35:07.624055
- Title: Modeling Financial Time Series using LSTM with Trainable Initial Hidden
States
- Title(参考訳): LSTMとトレーニング可能な初期隠れ状態を用いた金融時系列のモデル化
- Authors: Jungsik Hwang
- Abstract要約: 本稿では,ディープラーニングモデルを用いた金融時系列のモデリング手法を提案する。
トレーニング可能な初期隠れ状態を備えたLong Short-Term Memory (LSTM) ネットワークを使用する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Extracting previously unknown patterns and information in time series is
central to many real-world applications. In this study, we introduce a novel
approach to modeling financial time series using a deep learning model. We use
a Long Short-Term Memory (LSTM) network equipped with the trainable initial
hidden states. By learning to reconstruct time series, the proposed model can
represent high-dimensional time series data with its parameters. An experiment
with the Korean stock market data showed that the model was able to capture the
relative similarity between a large number of stock prices in its latent space.
Besides, the model was also able to predict the future stock trends from the
latent space. The proposed method can help to identify relationships among many
time series, and it could be applied to financial applications, such as
optimizing the investment portfolios.
- Abstract(参考訳): 過去の未知のパターンや情報を時系列で抽出することは、多くの現実世界のアプリケーションの中心である。
本研究では,深層学習モデルを用いて金融時系列をモデル化する新しい手法を提案する。
トレーニング可能な初期隠れ状態を備えたLong Short-Term Memory(LSTM)ネットワークを使用する。
時系列の再構成を学習することにより,そのパラメータで高次元時系列データを表現できる。
韓国株式市場のデータを用いた実験により、このモデルは潜在空間における大量の株価の相対的類似性を捉えることができた。
さらに、このモデルでは、潜在分野から将来の株価トレンドを予測することもできる。
提案手法は,多くの時系列間の関係を識別する上で有用であり,投資ポートフォリオの最適化など,金融アプリケーションに適用することができる。
関連論文リスト
- PLUTUS: A Well Pre-trained Large Unified Transformer can Unveil Financial Time Series Regularities [0.848210898747543]
金融時系列モデリングは市場行動の理解と予測に不可欠である。
従来のモデルは、非線形性、非定常性、高ノイズレベルのために複雑なパターンを捉えるのに苦労している。
NLPにおける大きな言語モデルの成功に触発されて、$textbfPLUTUS$, a $textbfP$re-trained $textbfL$argeを紹介します。
PLUTUSは10億以上のパラメータを持つ最初のオープンソース、大規模、事前訓練された金融時系列モデルである。
論文 参考訳(メタデータ) (2024-08-19T15:59:46Z) - Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
時系列データは、現実世界のシナリオにおいて非常に重要である。
近年、時系列コミュニティで顕著なブレークスルーが見られた。
多様な分析タスクのためのディープ時系列モデルの公正なベンチマークとして、時系列ライブラリ(TSLib)をリリースします。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - Stochastic Diffusion: A Diffusion Probabilistic Model for Stochastic Time Series Forecasting [8.232475807691255]
本稿では,データ駆動型事前知識を各ステップで学習する新しい拡散(StochDiff)モデルを提案する。
学習された事前知識は、複雑な時間的ダイナミクスとデータ固有の不確実性を捉えるのに役立つ。
論文 参考訳(メタデータ) (2024-06-05T00:13:38Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
本稿では,ニューラルPDEソルバの原理に着想を得た新しいLMTFモデルであるPDETimeを提案する。
7つの異なる時間的実世界のLMTFデータセットを用いた実験により、PDETimeがデータ固有の性質に効果的に適応できることが判明した。
論文 参考訳(メタデータ) (2024-02-25T17:39:44Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
時系列事前トレーニングは、最近、ラベルのコストを削減し、下流の様々なタスクに利益をもたらす可能性があるとして、広く注目を集めている。
本稿では,シームズネットワークに基づく時系列の簡易かつ効果的な自己教師型事前学習フレームワークとしてTimeSiamを提案する。
論文 参考訳(メタデータ) (2024-02-04T13:10:51Z) - Timer: Generative Pre-trained Transformers Are Large Time Series Models [83.03091523806668]
本稿では,大規模時系列モデル(LTSM)の早期開発を目的とした。
事前トレーニング中に、最大10億のタイムポイントを持つ大規模なデータセットをキュレートします。
多様なアプリケーションのニーズを満たすため,予測,計算,時系列の異常検出を統一的な生成タスクに変換する。
論文 参考訳(メタデータ) (2024-02-04T06:55:55Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
本稿では,デコーダのみの変換器アーキテクチャに基づく時系列予測のための汎用基礎モデルであるLag-Llamaを提案する。
Lag-Llamaは、複数のドメインからの多様な時系列データの大規模なコーパスで事前訓練され、強力なゼロショット一般化能力を示す。
このような未確認データセットの比較的小さな部分で微調整を行うと、Lag-Llamaは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-12T12:29:32Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - Pre-training Enhanced Spatial-temporal Graph Neural Network for
Multivariate Time Series Forecasting [13.441945545904504]
スケーラブルな時系列事前学習モデル(STEP)によりSTGNNが拡張される新しいフレームワークを提案する。
具体的には、非常に長期の歴史時系列から時間パターンを効率的に学習するための事前学習モデルを設計する。
我々のフレームワークは下流のSTGNNを著しく強化することができ、事前学習モデルは時間パターンを適切にキャプチャする。
論文 参考訳(メタデータ) (2022-06-18T04:24:36Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
我々は、統計的、機械学習、ディープラーニングモデルの集合から成り立つ、非常に堅牢で正確な株価予測の枠組みを提示する。
当社は、インドの国立証券取引所(NSE)に上場している非常に有名な企業の、毎日の株価データを5分間隔で収集しています。
統計,機械学習,深層学習を組み合わせたモデル構築の凝集的アプローチは,株価データの揮発性およびランダムな動きパターンから極めて効果的に学習できる,と我々は主張する。
論文 参考訳(メタデータ) (2020-04-17T19:41:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。