論文の概要: A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models
- arxiv url: http://arxiv.org/abs/2004.11697v2
- Date: Mon, 31 May 2021 14:46:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-12 13:09:37.950845
- Title: A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models
- Title(参考訳): 機械学習とディープラーニングモデルを用いた時系列分析に基づく株価予測
- Authors: Sidra Mehtab and Jaydip Sen
- Abstract要約: 我々は、統計的、機械学習、ディープラーニングモデルの集合から成り立つ、非常に堅牢で正確な株価予測の枠組みを提示する。
当社は、インドの国立証券取引所(NSE)に上場している非常に有名な企業の、毎日の株価データを5分間隔で収集しています。
統計,機械学習,深層学習を組み合わせたモデル構築の凝集的アプローチは,株価データの揮発性およびランダムな動きパターンから極めて効果的に学習できる,と我々は主張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prediction of future movement of stock prices has always been a challenging
task for the researchers. While the advocates of the efficient market
hypothesis (EMH) believe that it is impossible to design any predictive
framework that can accurately predict the movement of stock prices, there are
seminal work in the literature that have clearly demonstrated that the
seemingly random movement patterns in the time series of a stock price can be
predicted with a high level of accuracy. Design of such predictive models
requires choice of appropriate variables, right transformation methods of the
variables, and tuning of the parameters of the models. In this work, we present
a very robust and accurate framework of stock price prediction that consists of
an agglomeration of statistical, machine learning and deep learning models. We
use the daily stock price data, collected at five minutes interval of time, of
a very well known company that is listed in the National Stock Exchange (NSE)
of India. The granular data is aggregated into three slots in a day, and the
aggregated data is used for building and training the forecasting models. We
contend that the agglomerative approach of model building that uses a
combination of statistical, machine learning, and deep learning approaches, can
very effectively learn from the volatile and random movement patterns in a
stock price data. We build eight classification and eight regression models
based on statistical and machine learning approaches. In addition to these
models, a deep learning regression model using a long-and-short-term memory
(LSTM) network is also built. Extensive results have been presented on the
performance of these models, and the results are critically analyzed.
- Abstract(参考訳): 株価の将来の動きを予測することは、研究者にとって常に難しい課題だった。
効率的な市場仮説(EMH)の提唱者は、株価の変動を正確に予測できる予測フレームワークを設計することは不可能であると考えているが、株価の時系列における一見ランダムな動きパターンが高い精度で予測できることを明確に証明した文献には、基礎的な研究がある。
このような予測モデルの設計には、適切な変数の選択、変数の正しい変換方法、モデルのパラメータのチューニングが必要である。
本研究では,統計モデル,機械学習モデル,ディープラーニングモデルの集合からなる,非常に堅牢で正確な株価予測フレームワークを提案する。
当社は、インドの国立証券取引所(NSE)に上場している非常に有名な企業の、毎日の株価データを5分間隔で収集しています。
粒度データは1日に3つのスロットに集約され、集約されたデータは予測モデルの構築とトレーニングに使用される。
統計学、機械学習、ディープラーニングの手法を組み合わせたモデル構築の凝集的アプローチは、株価データにおける揮発性とランダムな動きパターンから非常に効果的に学習できると主張する。
統計的および機械学習アプローチに基づく8つの分類と8つの回帰モデルを構築した。
これらのモデルに加えて、長期記憶(LSTM)ネットワークを用いたディープラーニング回帰モデルも構築されている。
これらのモデルの性能に関する広範な結果が示されており、その結果は批判的に分析されている。
関連論文リスト
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
本稿では,強化学習に基づく学習可能なデータ拡張手法であるAutoTSAugを紹介する。
限界サンプルを学習可能なポリシーで強化することにより、AutoTSAugは予測性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-09-10T07:34:19Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - A Study on Stock Forecasting Using Deep Learning and Statistical Models [3.437407981636465]
本稿では、株価予測のための多くのディープラーニングアルゴリズムを概説し、トレーニングとテストにs&p500インデックスデータを用いた。
自動回帰積分移動平均モデル、リカレントニューラルネットワークモデル、長い短期モデル、畳み込みニューラルネットワークモデル、完全な畳み込みニューラルネットワークモデルなど、さまざまなモデルについて議論する。
論文 参考訳(メタデータ) (2024-02-08T16:45:01Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - Stock Price Prediction Using Time Series, Econometric, Machine Learning,
and Deep Learning Models [0.0]
本稿では,株価予測のための時系列,エコノメトリ,各種学習モデルについて述べる。
2004年1月から2019年12月までのInfosys、ICICI、SUN PHARMAのデータは、ここでモデルのトレーニングとテストに使用された。
火星は最高の機械学習モデルであることが証明され、LSTMは最高のディープラーニングモデルであることが証明された。
論文 参考訳(メタデータ) (2021-11-01T17:17:52Z) - Design and Analysis of Robust Deep Learning Models for Stock Price
Prediction [0.0]
株価と株価の動きの堅牢かつ正確な予測のための予測モデルを構築することは、解決すべき課題である。
本章では、インド国立証券取引所(NSE)の多角化部門に上場する株式の将来価格の堅牢かつ正確な予測のために、ディープラーニングアーキテクチャ上に構築された予測回帰モデル集を提案する。
論文 参考訳(メタデータ) (2021-06-17T17:15:02Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
視覚的MBRLアルゴリズムにおける予測モデルの設計決定について検討する。
潜在空間の使用など、しばしば重要と見なされる設計上の決定は、タスクのパフォーマンスにはほとんど影響しないことが分かりました。
我々は,この現象が探索とどのように関係しているか,および標準ベンチマークにおける下位スコーリングモデルのいくつかが,同じトレーニングデータでトレーニングされた場合のベストパフォーマンスモデルと同等の性能を発揮するかを示す。
論文 参考訳(メタデータ) (2020-12-08T18:03:21Z) - Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep
Learning Models [0.0]
本稿では,株価予測において非常に高い精度が得られるディープラーニングに基づく回帰モデルについて述べる。
我々は4つの畳み込みニューラルネットワーク(CNN)と5つの長期記憶と短期記憶に基づくディープラーニングモデルを構築し、将来の株価を正確に予測する。
論文 参考訳(メタデータ) (2020-11-07T16:07:10Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
我々は、無限確率的地平線を持つ環境力学の予測モデルである$gamma$-modelを導入する。
トレーニングタイムとテストタイムの複合的なエラーの間には、そのトレーニングが避けられないトレードオフを反映しているかについて議論する。
論文 参考訳(メタデータ) (2020-10-27T17:54:12Z) - Stock Price Prediction Using Machine Learning and LSTM-Based Deep
Learning Models [1.335161061703997]
本稿では,異なる機械学習モデルとディープラーニングモデルを構築するための,株価予測のためのハイブリッドモデリング手法を提案する。
2014年12月29日から2020年7月31日まで、インドの国立証券取引所(NSE)のNIFTY50指数を用いた。
我々は,LSTM回帰モデルを用いて,アーキテクチャや入力データの構造に異なる4つの異なるモデルを用いて,将来のNIFTY 50オープン値を予測する。
論文 参考訳(メタデータ) (2020-09-20T20:32:33Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。