Global quantitative robustness of regression feed-forward neural
networks
- URL: http://arxiv.org/abs/2211.10124v1
- Date: Fri, 18 Nov 2022 09:57:53 GMT
- Title: Global quantitative robustness of regression feed-forward neural
networks
- Authors: Tino Werner
- Abstract summary: We adapt the notion of the regression breakdown point to regression neural networks.
We compare the performance, measured by the out-of-sample loss, by a proxy of the breakdown rate.
The results indeed motivate to use robust loss functions for neural network training.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks are an indispensable model class for many complex learning
tasks. Despite the popularity and importance of neural networks and many
different established techniques from literature for stabilization and
robustification of the training, the classical concepts from robust statistics
have rarely been considered so far in the context of neural networks.
Therefore, we adapt the notion of the regression breakdown point to regression
neural networks and compute the breakdown point for different feed-forward
network configurations and contamination settings. In an extensive simulation
study, we compare the performance, measured by the out-of-sample loss, by a
proxy of the breakdown rate and by the training steps, of non-robust and robust
regression feed-forward neural networks in a plethora of different
configurations. The results indeed motivate to use robust loss functions for
neural network training.
Related papers
- The sampling complexity of learning invertible residual neural networks [9.614718680817269]
It has been shown that determining a feedforward ReLU neural network to within high uniform accuracy from point samples suffers from the curse of dimensionality.
We consider the question of whether the sampling complexity can be improved by restricting the specific neural network architecture.
Our main result shows that the residual neural network architecture and invertibility do not help overcome the complexity barriers encountered with simpler feedforward architectures.
arXiv Detail & Related papers (2024-11-08T10:00:40Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Epistemic Modeling Uncertainty of Rapid Neural Network Ensembles for
Adaptive Learning [0.0]
A new type of neural network is presented using the rapid neural network paradigm.
It is found that the proposed emulator embedded neural network trains near-instantaneously, typically without loss of prediction accuracy.
arXiv Detail & Related papers (2023-09-12T22:34:34Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
We find that the variance of network weights and spatial concentration of large weights are the main factors that impact neural persistence.
We propose an extension of the filtration underlying neural persistence to the whole neural network instead of single layers.
This yields our deep graph persistence measure, which implicitly incorporates persistent paths through the network and alleviates variance-related issues.
arXiv Detail & Related papers (2023-07-20T13:34:11Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - Consistency of Neural Networks with Regularization [0.0]
This paper proposes the general framework of neural networks with regularization and prove its consistency.
Two types of activation functions: hyperbolic function(Tanh) and rectified linear unit(ReLU) have been taken into consideration.
arXiv Detail & Related papers (2022-06-22T23:33:39Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - Formalizing Generalization and Robustness of Neural Networks to Weight
Perturbations [58.731070632586594]
We provide the first formal analysis for feed-forward neural networks with non-negative monotone activation functions against weight perturbations.
We also design a new theory-driven loss function for training generalizable and robust neural networks against weight perturbations.
arXiv Detail & Related papers (2021-03-03T06:17:03Z) - Implicit recurrent networks: A novel approach to stationary input
processing with recurrent neural networks in deep learning [0.0]
In this work, we introduce and test a novel implementation of recurrent neural networks into deep learning.
We provide an algorithm which implements the backpropagation algorithm on a implicit implementation of recurrent networks.
A single-layer implicit recurrent network is able to solve the XOR problem, while a feed-forward network with monotonically increasing activation function fails at this task.
arXiv Detail & Related papers (2020-10-20T18:55:32Z) - Measurement error models: from nonparametric methods to deep neural
networks [3.1798318618973362]
We propose an efficient neural network design for estimating measurement error models.
We use a fully connected feed-forward neural network to approximate the regression function $f(x)$.
We conduct an extensive numerical study to compare the neural network approach with classical nonparametric methods.
arXiv Detail & Related papers (2020-07-15T06:05:37Z) - ResiliNet: Failure-Resilient Inference in Distributed Neural Networks [56.255913459850674]
We introduce ResiliNet, a scheme for making inference in distributed neural networks resilient to physical node failures.
Failout simulates physical node failure conditions during training using dropout, and is specifically designed to improve the resiliency of distributed neural networks.
arXiv Detail & Related papers (2020-02-18T05:58:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.