Cause vs. Effect in Context-Sensitive Prediction of Business Process
Instances
- URL: http://arxiv.org/abs/2007.07549v2
- Date: Mon, 21 Sep 2020 10:17:28 GMT
- Title: Cause vs. Effect in Context-Sensitive Prediction of Business Process
Instances
- Authors: Jens Brunk, Matthias Stierle, Leon Papke, Kate Revoredo, Martin
Matzner, J\"org Becker
- Abstract summary: This paper addresses the issue of context being cause or effect of the next event and its impact on next event prediction.
We leverage previous work on probabilistic models to develop a Dynamic Bayesian Network technique.
We evaluate our technique with two real-life data sets and benchmark it with other techniques from the field of predictive process monitoring.
- Score: 0.440401067183266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting undesirable events during the execution of a business process
instance provides the process participants with an opportunity to intervene and
keep the process aligned with its goals. Few approaches for tackling this
challenge consider a multi-perspective view, where the flow perspective of the
process is combined with its surrounding context. Given the many sources of
data in today's world, context can vary widely and have various meanings. This
paper addresses the issue of context being cause or effect of the next event
and its impact on next event prediction. We leverage previous work on
probabilistic models to develop a Dynamic Bayesian Network technique.
Probabilistic models are considered comprehensible and they allow the end-user
and his or her understanding of the domain to be involved in the prediction.
Our technique models context attributes that have either a cause or effect
relationship towards the event. We evaluate our technique with two real-life
data sets and benchmark it with other techniques from the field of predictive
process monitoring. The results show that our solution achieves superior
prediction results if context information is correctly introduced into the
model.
Related papers
- Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Uniting contrastive and generative learning for event sequences models [51.547576949425604]
This study investigates the integration of two self-supervised learning techniques - instance-wise contrastive learning and a generative approach based on restoring masked events in latent space.
Experiments conducted on several public datasets, focusing on sequence classification and next-event type prediction, show that the integrated method achieves superior performance compared to individual approaches.
arXiv Detail & Related papers (2024-08-19T13:47:17Z) - OpenEP: Open-Ended Future Event Prediction [57.63525290892786]
We introduce OpenEP (an Open-Ended Future Event Prediction task), which generates flexible and diverse predictions aligned with real-world scenarios.
For question construction, we pose questions from seven perspectives, including location, time, event development, event outcome, event impact, event response, and other.
For outcome construction, we collect free-form text containing the outcomes as ground truth to provide semantically complete and detail-enriched outcomes.
arXiv Detail & Related papers (2024-08-13T02:35:54Z) - Generating Feasible and Plausible Counterfactual Explanations for Outcome Prediction of Business Processes [45.502284864662585]
We introduce a data-driven approach, REVISEDplus, to generate plausible counterfactual explanations.
First, we restrict the counterfactual algorithm to generate counterfactuals that lie within a high-density region of the process data.
We also ensure plausibility by learning sequential patterns between the activities in the process cases.
arXiv Detail & Related papers (2024-03-14T09:56:35Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
We propose a novel model combining Graph Neural Networks and Marked Temporal Point Process (MTPP)
Our experiments demonstrate the superior performance of our model in terms of both model accuracy and training efficiency.
arXiv Detail & Related papers (2022-05-21T15:30:25Z) - Object-centric Process Predictive Analytics [0.5161531917413706]
Object-centric processes are implementations of a paradigm where an instance of one process is not executed in isolation but interacts with other instances of the same or other processes.
This paper proposes an approach to incorporate the information about the object interactions into the predictive analytics.
arXiv Detail & Related papers (2022-03-05T18:46:10Z) - Process Model Forecasting Using Time Series Analysis of Event Sequence
Data [0.23099144596725568]
We develop a technique to forecast the entire process model from historical event data.
Our implementation demonstrates the accuracy of our technique on real-world event log data.
arXiv Detail & Related papers (2021-05-03T18:00:27Z) - Text-Aware Predictive Monitoring of Business Processes [0.8602553195689513]
We develop a novel text-aware process prediction model based on Long Short-Term Memory (LSTM) neural networks and natural language models.
The proposed model can take categorical, numerical and textual attributes in event data into account to predict the activity and timestamp of the next event, the outcome, and the cycle time of a running process instance.
Experiments show that the text-aware model is able to outperform state-of-the-art process prediction methods on simulated and real-world event logs containing textual data.
arXiv Detail & Related papers (2021-04-20T13:51:27Z) - Counterfactual Predictions under Runtime Confounding [74.90756694584839]
We study the counterfactual prediction task in the setting where all relevant factors are captured in the historical data.
We propose a doubly-robust procedure for learning counterfactual prediction models in this setting.
arXiv Detail & Related papers (2020-06-30T15:49:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.