OpenEP: Open-Ended Future Event Prediction
- URL: http://arxiv.org/abs/2408.06578v2
- Date: Wed, 14 Aug 2024 01:37:39 GMT
- Title: OpenEP: Open-Ended Future Event Prediction
- Authors: Yong Guan, Hao Peng, Xiaozhi Wang, Lei Hou, Juanzi Li,
- Abstract summary: We introduce OpenEP (an Open-Ended Future Event Prediction task), which generates flexible and diverse predictions aligned with real-world scenarios.
For question construction, we pose questions from seven perspectives, including location, time, event development, event outcome, event impact, event response, and other.
For outcome construction, we collect free-form text containing the outcomes as ground truth to provide semantically complete and detail-enriched outcomes.
- Score: 57.63525290892786
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Future event prediction (FEP) is a long-standing and crucial task in the world, as understanding the evolution of events enables early risk identification, informed decision-making, and strategic planning. Existing work typically treats event prediction as classification tasks and confines the outcomes of future events to a fixed scope, such as yes/no questions, candidate set, and taxonomy, which is difficult to include all possible outcomes of future events. In this paper, we introduce OpenEP (an Open-Ended Future Event Prediction task), which generates flexible and diverse predictions aligned with real-world scenarios. This is mainly reflected in two aspects: firstly, the predictive questions are diverse, covering different stages of event development and perspectives; secondly, the outcomes are flexible, without constraints on scope or format. To facilitate the study of this task, we construct OpenEPBench, an open-ended future event prediction dataset. For question construction, we pose questions from seven perspectives, including location, time, event development, event outcome, event impact, event response, and other, to facilitate an in-depth analysis and understanding of the comprehensive evolution of events. For outcome construction, we collect free-form text containing the outcomes as ground truth to provide semantically complete and detail-enriched outcomes. Furthermore, we propose StkFEP, a stakeholder-enhanced future event prediction framework, that incorporates event characteristics for open-ended settings. Our method extracts stakeholders involved in events to extend questions to gather diverse information. We also collect historically events that are relevant and similar to the question to reveal potential evolutionary patterns. Experiment results indicate that accurately predicting future events in open-ended settings is challenging for existing LLMs.
Related papers
- EVIT: Event-Oriented Instruction Tuning for Event Reasoning [18.012724531672813]
Event reasoning aims to infer events according to certain relations and predict future events.
Large language models (LLMs) have made significant advancements in event reasoning owing to their wealth of knowledge and reasoning capabilities.
However, smaller instruction-tuned models currently in use do not consistently demonstrate exceptional proficiency in managing these tasks.
arXiv Detail & Related papers (2024-04-18T08:14:53Z) - Improving Event Definition Following For Zero-Shot Event Detection [66.27883872707523]
Existing approaches on zero-shot event detection usually train models on datasets annotated with known event types.
We aim to improve zero-shot event detection by training models to better follow event definitions.
arXiv Detail & Related papers (2024-03-05T01:46:50Z) - SCTc-TE: A Comprehensive Formulation and Benchmark for Temporal Event Forecasting [63.01035584154509]
We develop a fully automated pipeline and construct a large-scale dataset named MidEast-TE from about 0.6 million news articles.
This dataset focuses on the cooperation and conflict events among countries mainly in the MidEast region from 2015 to 2022.
We propose a novel method LoGo that is able to take advantage of both Local and Global contexts for SCTc-TE forecasting.
arXiv Detail & Related papers (2023-12-02T07:40:21Z) - A Survey on Event Prediction Methods from a Systems Perspective:
Bringing Together Disparate Research Areas [0.0]
Event prediction aims to support the user in deciding on actions that change future events towards a desired state.
The diversity of application domains results in a diverse range of methods that are scattered across various research areas.
To facilitate knowledge sharing on account of a comprehensive classification, integration, and assessment of event prediction methods, we combine and take a systems perspective.
arXiv Detail & Related papers (2023-02-08T12:21:02Z) - Rich Event Modeling for Script Event Prediction [60.67635412135682]
We propose the Rich Event Prediction (REP) framework for script event prediction.
REP contains an event extractor to extract such information from texts.
The core component of the predictor is a transformer-based event encoder to flexibly deal with an arbitrary number of arguments.
arXiv Detail & Related papers (2022-12-16T05:17:59Z) - Zero-Shot On-the-Fly Event Schema Induction [61.91468909200566]
We present a new approach in which large language models are utilized to generate source documents that allow predicting, given a high-level event definition, the specific events, arguments, and relations between them.
Using our model, complete schemas on any topic can be generated on-the-fly without any manual data collection, i.e., in a zero-shot manner.
arXiv Detail & Related papers (2022-10-12T14:37:00Z) - COfEE: A Comprehensive Ontology for Event Extraction from text, with an
online annotation tool [3.8995911009078816]
Event Extraction (EE) seeks to derive information about specific incidents and their actors from the text.
EE is useful in many domains such as building a knowledge base, information retrieval, summarization and online monitoring systems.
COfEE consists of two hierarchy levels (event types and event sub-types) that include new categories relating to environmental issues, cyberspace, criminal activity and natural disasters.
arXiv Detail & Related papers (2021-07-21T19:43:22Z) - Streaming Social Event Detection and Evolution Discovery in
Heterogeneous Information Networks [90.3475746663728]
Events are happening in real-world and real-time, which can be planned and organized for occasions, such as social gatherings, festival celebrations, influential meetings or sports activities.
Social media platforms generate a lot of real-time text information regarding public events with different topics.
However, mining social events is challenging because events typically exhibit heterogeneous texture and metadata are often ambiguous.
arXiv Detail & Related papers (2021-04-02T02:13:10Z) - A Deep Adversarial Model for Suffix and Remaining Time Prediction of
Event Sequences [12.200302768200503]
Event suffix and remaining time prediction are sequence to sequence learning tasks.
Recent deep learning-based works for such predictions are prone to potentially large prediction errors.
We propose an encoder-decoder architecture for open-loop training to advance the suffix and remaining time prediction of event sequences.
arXiv Detail & Related papers (2021-02-15T02:01:24Z) - Cause vs. Effect in Context-Sensitive Prediction of Business Process
Instances [0.440401067183266]
This paper addresses the issue of context being cause or effect of the next event and its impact on next event prediction.
We leverage previous work on probabilistic models to develop a Dynamic Bayesian Network technique.
We evaluate our technique with two real-life data sets and benchmark it with other techniques from the field of predictive process monitoring.
arXiv Detail & Related papers (2020-07-15T08:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.