論文の概要: Incremental Without Replacement Sampling in Nonconvex Optimization
- arxiv url: http://arxiv.org/abs/2007.07557v3
- Date: Thu, 17 Jun 2021 09:02:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 06:29:02.955008
- Title: Incremental Without Replacement Sampling in Nonconvex Optimization
- Title(参考訳): 非凸最適化における置換サンプリングなしインクリメンタル
- Authors: Edouard Pauwels (IRIT-ADRIA)
- Abstract要約: 経験的リスクに対する最小限の分解法は、一般に近似設定で分析される。
一方、このような手法の現代的な実装は漸進的であり、それらは置換せずにサンプリングに依存しており、利用可能な分析は極めて少ない。
我々は、多変数な漸進勾配スキームを解析することにより、後者の変分に対する収束保証を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Minibatch decomposition methods for empirical risk minimization are commonly
analysed in a stochastic approximation setting, also known as sampling with
replacement. On the other hands modern implementations of such techniques are
incremental: they rely on sampling without replacement, for which available
analysis are much scarcer. We provide convergence guaranties for the latter
variant by analysing a versatile incremental gradient scheme. For this scheme,
we consider constant, decreasing or adaptive step sizes. In the smooth setting
we obtain explicit complexity estimates in terms of epoch counter. In the
nonsmooth setting we prove that the sequence is attracted by solutions of
optimality conditions of the problem.
- Abstract(参考訳): 経験的リスク最小化のための最小バッチ分解法は、一般に確率近似の設定で分析される。
一方、このような手法の現代的な実装は漸進的であり、それらは置換せずにサンプリングに依存しており、利用可能な分析は極めて少ない。
我々は,多彩な漸進勾配スキームを解析することにより,後者の変種に対する収束保証を提供する。
このスキームでは、定数、減少または適応的なステップサイズを考える。
滑らかな設定では、エポックカウンタの観点から明示的な複雑性推定を得る。
非滑らかな設定では、この列が問題の最適性条件の解に惹かれることが証明される。
関連論文リスト
- Diffusion Stochastic Optimization for Min-Max Problems [33.73046548872663]
楽観的勾配法はミニマックス最適化問題に対処するのに有用である。
従来のバージョンでは大きなバッチサイズが必要であり,Samevareps-generativeOGOGと呼ばれる新しい定式化を導入,解析する。
論文 参考訳(メタデータ) (2024-01-26T01:16:59Z) - On the Stochastic (Variance-Reduced) Proximal Gradient Method for
Regularized Expected Reward Optimization [12.244251361123396]
我々は、強化学習(RL)における既存の問題の多くを網羅する非文献設定における正規化期待報酬最適化問題を考える。
特に、標準条件下では、$O(epsilon-4)$サンプルを$epsilon-stationaryポイントに含めることが示されている。
追加条件下では,サンプルの複雑さが$epsilon-4)$から$O(epsilon-3)$に改善できることが示されている。
論文 参考訳(メタデータ) (2024-01-23T06:01:29Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
滑らかで非滑らかな項の和として形成される凸有限サム目標を最小化するための条件勾配法(CGM)を提案する。
提案手法は, 平均勾配 (SAG) 推定器を備え, 1回に1回のサンプルしか必要としないが, より高度な分散低減技術と同等の高速収束速度を保証できる。
論文 参考訳(メタデータ) (2022-02-26T19:10:48Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
シャッフルに基づく変種(ミニバッチと局所ランダムリシャッフル)について検討する。
ポリアック・ロジャシエヴィチ条件を満たす滑らかな函数に対して、これらのシャッフル型不変量(英語版)(shuffling-based variants)がそれらの置換式よりも早く収束することを示す収束境界を得る。
我々は, 同期シャッフル法と呼ばれるアルゴリズムの修正を提案し, ほぼ均一な条件下では, 下界よりも収束速度が速くなった。
論文 参考訳(メタデータ) (2021-10-20T02:25:25Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
本稿では, ステップサイズが一定であるSEG法の解析を行い, 良好な収束をもたらす手法のバリエーションを示す。
平均化で拡張した場合、SEGはナッシュ平衡に確実に収束し、スケジュールされた再起動手順を組み込むことで、その速度が確実に加速されることを証明した。
論文 参考訳(メタデータ) (2021-06-30T17:51:36Z) - Optimal Rates for Random Order Online Optimization [60.011653053877126]
敵が損失関数を選択できるカテットガルバー2020onlineについて検討するが、一様にランダムな順序で提示される。
2020onlineアルゴリズムが最適境界を達成し,安定性を著しく向上することを示す。
論文 参考訳(メタデータ) (2021-06-29T09:48:46Z) - Variance Regularization for Accelerating Stochastic Optimization [14.545770519120898]
ミニバッチ勾配に隠れた統計情報を利用してランダムな誤りの蓄積を低減する普遍原理を提案する。
これは、ミニバッチのばらつきに応じて学習率を正規化することで達成される。
論文 参考訳(メタデータ) (2020-08-13T15:34:01Z) - Robust Sampling in Deep Learning [62.997667081978825]
ディープラーニングは、オーバーフィッティングを減らし、一般化を改善するために正規化メカニズムを必要とする。
分散ロバスト最適化に基づく新しい正規化手法によりこの問題に対処する。
トレーニング中は、最悪のサンプルが最適化に最も貢献するものであるように、その正確性に応じてサンプルの選択が行われる。
論文 参考訳(メタデータ) (2020-06-04T09:46:52Z) - The Simulator: Understanding Adaptive Sampling in the
Moderate-Confidence Regime [52.38455827779212]
エミュレータと呼ばれる適応サンプリングを解析するための新しい手法を提案する。
適切なログファクタを組み込んだトップk問題の最初のインスタンスベースの下位境界を証明します。
我々の新しい分析は、後者の問題に対するこの種の最初のエミュレータであるベストアームとトップkの識別に、シンプルでほぼ最適であることを示した。
論文 参考訳(メタデータ) (2017-02-16T23:42:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。