論文の概要: On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging
- arxiv url: http://arxiv.org/abs/2107.00464v1
- Date: Wed, 30 Jun 2021 17:51:36 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-02 13:52:08.477118
- Title: On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging
- Title(参考訳): 反復平均化を再開した双線型ゲームにおける確率的超勾配の収束について
- Authors: Chris Junchi Li, Yaodong Yu, Nicolas Loizou, Gauthier Gidel, Yi Ma,
Nicolas Le Roux, Michael I. Jordan
- Abstract要約: 本稿では, ステップサイズが一定であるSEG法の解析を行い, 良好な収束をもたらす手法のバリエーションを示す。
平均化で拡張した場合、SEGはナッシュ平衡に確実に収束し、スケジュールされた再起動手順を組み込むことで、その速度が確実に加速されることを証明した。
- 参考スコア(独自算出の注目度): 96.13485146617322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the stochastic bilinear minimax optimization problem, presenting an
analysis of the Stochastic ExtraGradient (SEG) method with constant step size,
and presenting variations of the method that yield favorable convergence. We
first note that the last iterate of the basic SEG method only contracts to a
fixed neighborhood of the Nash equilibrium, independent of the step size. This
contrasts sharply with the standard setting of minimization where standard
stochastic algorithms converge to a neighborhood that vanishes in proportion to
the square-root (constant) step size. Under the same setting, however, we prove
that when augmented with iteration averaging, SEG provably converges to the
Nash equilibrium, and such a rate is provably accelerated by incorporating a
scheduled restarting procedure. In the interpolation setting, we achieve an
optimal convergence rate up to tight constants. We present numerical
experiments that validate our theoretical findings and demonstrate the
effectiveness of the SEG method when equipped with iteration averaging and
restarting.
- Abstract(参考訳): 確率的双線形極小最適化問題について検討し, ステップサイズが一定である確率的指数関数法 (SEG) の解析を行い, 好ましく収束する手法のバリエーションを示す。
まず,基本seg法の最後の反復は,ステップサイズとは無関係に,nash平衡の固定近傍にのみ一致することを指摘した。
これは、標準確率アルゴリズムが平方根(定数)のステップサイズに比例して消滅する近傍に収束する最小化の標準設定とは対照的である。
しかし,同じ条件下では,反復平均化によってsegがnash平衡に収束し,スケジュールされた再起動手順を組み込むことにより,その速度が確実に促進されることを示す。
補間設定では、最適収束率をタイトな定数まで達成する。
提案手法の有効性を検証し, 繰り返し平均化と再起動を行う場合のSEG法の有効性を示す数値実験を行った。
関連論文リスト
- Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
本稿では,1次と2次の両方の定常点を見つけるための信頼逐次準計画法を提案する。
本手法は, 1次定常点に収束するため, 対象対象の近似を最小化して定義された各イテレーションの勾配ステップを計算する。
2階定常点に収束するため,本手法は負曲率を減少するヘッセン行列を探索する固有ステップも計算する。
論文 参考訳(メタデータ) (2024-09-24T04:39:47Z) - FastPart: Over-Parameterized Stochastic Gradient Descent for Sparse
optimisation on Measures [1.9950682531209156]
本稿では,コニックパーティクルグラディエントDescent(CPGD)のスケーラビリティを高めるために,ランダム特徴と協調してグラディエントDescent戦略を利用する新しいアルゴリズムを提案する。
i) 降下軌道に沿った解の総変動規範は、安定を保ち、望ましくないばらつきを防止し、 (ii) 収率$mathcalO(log(K)/sqrtK)$$$K以上の大域収束保証を確立し、アルゴリズムの効率と有効性を示す; (iii) さらに、分析と確立を行う。
論文 参考訳(メタデータ) (2023-12-10T20:41:43Z) - Cyclic Block Coordinate Descent With Variance Reduction for Composite
Nonconvex Optimization [26.218670461973705]
非漸近勾配ノルム保証を協調する問題の解法を提案する。
本研究は,ニューラルネットの深部学習における循環還元方式の有効性を実証するものである。
論文 参考訳(メタデータ) (2022-12-09T19:17:39Z) - Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms [14.174806471635403]
粒子ダイナミック(IPD)に対するグラディエント・ランゲヴィン・ダイナミクス(SGLD)やランダムバッチ法(RBM)などのサンプリングアルゴリズムの近似を考察する。
近似によって生じる雑音は中央極限定理(CLT)によりほぼガウス的であるが、ブラウン運動はまさにガウス的である。
この構造を利用して拡散過程内の近似誤差を吸収し、これらのアルゴリズムの収束保証を改善する。
論文 参考訳(メタデータ) (2022-06-08T10:17:40Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
シャッフルに基づく変種(ミニバッチと局所ランダムリシャッフル)について検討する。
ポリアック・ロジャシエヴィチ条件を満たす滑らかな函数に対して、これらのシャッフル型不変量(英語版)(shuffling-based variants)がそれらの置換式よりも早く収束することを示す収束境界を得る。
我々は, 同期シャッフル法と呼ばれるアルゴリズムの修正を提案し, ほぼ均一な条件下では, 下界よりも収束速度が速くなった。
論文 参考訳(メタデータ) (2021-10-20T02:25:25Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
本稿では,SGDA と SCO の最終的な収束保証として,期待されるコヒーレンシティ条件を導入し,その利点を説明する。
定常的なステップサイズを用いた場合、両手法の線形収束性を解の近傍に証明する。
我々の収束保証は任意のサンプリングパラダイムの下で保たれ、ミニバッチの複雑さに関する洞察を与える。
論文 参考訳(メタデータ) (2021-06-30T18:32:46Z) - Incremental Without Replacement Sampling in Nonconvex Optimization [0.0]
経験的リスクに対する最小限の分解法は、一般に近似設定で分析される。
一方、このような手法の現代的な実装は漸進的であり、それらは置換せずにサンプリングに依存しており、利用可能な分析は極めて少ない。
我々は、多変数な漸進勾配スキームを解析することにより、後者の変分に対する収束保証を提供する。
論文 参考訳(メタデータ) (2020-07-15T09:17:29Z) - Balancing Rates and Variance via Adaptive Batch-Size for Stochastic
Optimization Problems [120.21685755278509]
本研究は,ステップサイズの減衰が正確な収束に必要であるという事実と,一定のステップサイズがエラーまでの時間でより速く学習するという事実のバランスをとることを目的とする。
ステップサイズのミニバッチを最初から修正するのではなく,パラメータを適応的に進化させることを提案する。
論文 参考訳(メタデータ) (2020-07-02T16:02:02Z) - Convergence rates and approximation results for SGD and its
continuous-time counterpart [16.70533901524849]
本稿では,非増加ステップサイズを有する凸勾配Descent (SGD) の完全理論的解析を提案する。
まず、結合を用いた不均一微分方程式(SDE)の解により、SGDを確実に近似できることを示す。
連続的手法による決定論的および最適化手法の最近の分析において, 連続過程の長期的挙動と非漸近的境界について検討する。
論文 参考訳(メタデータ) (2020-04-08T18:31:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。