論文の概要: A Survey of Privacy Attacks in Machine Learning
- arxiv url: http://arxiv.org/abs/2007.07646v3
- Date: Sat, 16 Sep 2023 15:12:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 02:29:43.249422
- Title: A Survey of Privacy Attacks in Machine Learning
- Title(参考訳): 機械学習におけるプライバシ攻撃に関する調査
- Authors: Maria Rigaki and Sebastian Garcia
- Abstract要約: この研究は、機械学習に対するプライバシー攻撃に関連する40以上の論文の分析である。
プライバシリークの原因についての最初の調査と、異なる攻撃の詳細な分析が紹介されている。
本稿では,最も一般的に提案されている防衛の概観と,分析において確認されたオープンな問題と今後の方向性について論じる。
- 参考スコア(独自算出の注目度): 0.7614628596146599
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As machine learning becomes more widely used, the need to study its
implications in security and privacy becomes more urgent. Although the body of
work in privacy has been steadily growing over the past few years, research on
the privacy aspects of machine learning has received less focus than the
security aspects. Our contribution in this research is an analysis of more than
40 papers related to privacy attacks against machine learning that have been
published during the past seven years. We propose an attack taxonomy, together
with a threat model that allows the categorization of different attacks based
on the adversarial knowledge, and the assets under attack. An initial
exploration of the causes of privacy leaks is presented, as well as a detailed
analysis of the different attacks. Finally, we present an overview of the most
commonly proposed defenses and a discussion of the open problems and future
directions identified during our analysis.
- Abstract(参考訳): 機械学習がより広く使われるようになると、セキュリティとプライバシにおけるその影響を研究する必要性がより緊急になる。
プライバシの本体はここ数年着実に成長しているが、機械学習のプライバシー面の研究は、セキュリティ面よりもあまり注目されていない。
この研究への私たちの貢献は、過去7年間に発表された機械学習に対するプライバシ攻撃に関する40以上の論文の分析です。
そこで本研究では,敵の知識と攻撃対象の資産に基づいて,異なる攻撃の分類を可能にする脅威モデルとともに,攻撃分類を提案する。
プライバシリークの原因に関する最初の調査と、さまざまな攻撃に関する詳細な分析が紹介されている。
最後に、最も一般的に提案されている防衛の概観と、分析中に特定されるオープンな問題と今後の方向性について論じる。
関連論文リスト
- Students Parrot Their Teachers: Membership Inference on Model
Distillation [54.392069096234074]
知識蒸留によるプライバシを,教師と学生のトレーニングセットの両方で研究する。
私たちの攻撃は、生徒セットと教師セットが類似している場合、または攻撃者が教師セットを毒できる場合、最強です。
論文 参考訳(メタデータ) (2023-03-06T19:16:23Z) - A Survey on Differential Privacy with Machine Learning and Future
Outlook [0.0]
差分プライバシーは、あらゆる攻撃や脆弱性から機械学習モデルを保護するために使用される。
本稿では,2つのカテゴリに分類される差分プライベート機械学習アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2022-11-19T14:20:53Z) - "Why do so?" -- A Practical Perspective on Machine Learning Security [21.538956161215555]
我々は139人の産業従事者との攻撃発生と懸念を分析した。
私たちの結果は、デプロイされた機械学習に対する現実世界の攻撃に光を当てています。
我々の研究は、現実の敵対的機械学習に関するさらなる研究の道を開くものだ。
論文 参考訳(メタデータ) (2022-07-11T19:58:56Z) - The Privacy Onion Effect: Memorization is Relative [76.46529413546725]
もっとも脆弱な外接点の"層"を取り除くことで、前もって安全だった点の新たな層を同じ攻撃に晒す。
これは、機械学習のようなプライバシー強化技術が、他のユーザーのプライバシーに悪影響を及ぼす可能性を示唆している。
論文 参考訳(メタデータ) (2022-06-21T15:25:56Z) - Privacy Threats Analysis to Secure Federated Learning [34.679990191199224]
産業レベルのフェデレーション学習フレームワークにおけるプライバシの脅威をセキュアな計算で分析する。
我々は,攻撃者が被害者のプライベート入力全体を逆転させることが可能であるという理論的分析を通して示す。
論文 参考訳(メタデータ) (2021-06-24T15:02:54Z) - Privacy and Robustness in Federated Learning: Attacks and Defenses [74.62641494122988]
このトピックに関する最初の包括的な調査を実施します。
FLの概念の簡潔な紹介と、1脅威モデル、2堅牢性に対する中毒攻撃と防御、3プライバシーに対する推論攻撃と防御、というユニークな分類学を通じて、私たちはこの重要なトピックのアクセス可能なレビューを提供します。
論文 参考訳(メタデータ) (2020-12-07T12:11:45Z) - When Machine Learning Meets Privacy: A Survey and Outlook [22.958274878097683]
プライバシーは、この機械学習ベースの人工知能時代において大きな関心事となっている。
プライバシと機械学習(ML)の保存に関する作業はまだ初期段階にある。
本稿では、プライバシ問題における最先端技術と機械学習ソリューションについて調査する。
論文 参考訳(メタデータ) (2020-11-24T00:52:49Z) - Applications of Differential Privacy in Social Network Analysis: A
Survey [60.696428840516724]
差別化プライバシは、情報を共有し、強力な保証でプライバシを保存するのに有効である。
ソーシャルネットワーク分析は多くのアプリケーションで広く採用されており、差分プライバシーの応用のための新たな領域が開かれた。
論文 参考訳(メタデータ) (2020-10-06T19:06:03Z) - More Than Privacy: Applying Differential Privacy in Key Areas of
Artificial Intelligence [62.3133247463974]
差分プライバシーは、AIのプライバシー保護以上のことができることを示す。
また、セキュリティを改善し、学習を安定させ、公正なモデルを構築し、AIの選択領域にコンポジションを課すためにも使用できる。
論文 参考訳(メタデータ) (2020-08-05T03:07:36Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - An Overview of Privacy in Machine Learning [2.8935588665357077]
この文書は、機械学習とプライバシに関する関連する概念に関する背景情報を提供する。
本稿では,個人および/または機密情報漏洩に関連する広範囲な攻撃を網羅する,敵対的モデルと設定について論じる。
論文 参考訳(メタデータ) (2020-05-18T13:05:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。