論文の概要: Model Inversion Attacks: A Survey of Approaches and Countermeasures
- arxiv url: http://arxiv.org/abs/2411.10023v1
- Date: Fri, 15 Nov 2024 08:09:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:37:41.426434
- Title: Model Inversion Attacks: A Survey of Approaches and Countermeasures
- Title(参考訳): モデル・インバージョン・アタック : アプローチと対策に関する調査
- Authors: Zhanke Zhou, Jianing Zhu, Fengfei Yu, Xuan Li, Xiong Peng, Tongliang Liu, Bo Han,
- Abstract要約: 近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
- 参考スコア(独自算出の注目度): 59.986922963781
- License:
- Abstract: The success of deep neural networks has driven numerous research studies and applications from Euclidean to non-Euclidean data. However, there are increasing concerns about privacy leakage, as these networks rely on processing private data. Recently, a new type of privacy attack, the model inversion attacks (MIAs), aims to extract sensitive features of private data for training by abusing access to a well-trained model. The effectiveness of MIAs has been demonstrated in various domains, including images, texts, and graphs. These attacks highlight the vulnerability of neural networks and raise awareness about the risk of privacy leakage within the research community. Despite the significance, there is a lack of systematic studies that provide a comprehensive overview and deeper insights into MIAs across different domains. This survey aims to summarize up-to-date MIA methods in both attacks and defenses, highlighting their contributions and limitations, underlying modeling principles, optimization challenges, and future directions. We hope this survey bridges the gap in the literature and facilitates future research in this critical area. Besides, we are maintaining a repository to keep track of relevant research at https://github.com/AndrewZhou924/Awesome-model-inversion-attack.
- Abstract(参考訳): ディープニューラルネットワークの成功により、ユークリッドから非ユークリッドデータまで、数多くの研究や応用が進められている。
しかし、これらのネットワークはプライベートデータの処理に依存しているため、プライバシーの漏洩に関する懸念が高まっている。
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、訓練用プライベートデータの機密性のある特徴を抽出し、訓練されたモデルへのアクセスを悪用することを目的としている。
MIAの有効性は画像、テキスト、グラフなど様々な領域で実証されている。
これらの攻撃は、ニューラルネットワークの脆弱性を強調し、研究コミュニティ内のプライバシー漏洩のリスクに対する認識を高める。
その重要性にもかかわらず、様々な領域にわたるMIAに関する総合的な概要と深い洞察を提供する体系的な研究が欠如している。
この調査は、攻撃と防御の両方で最新のMIAメソッドを要約することを目的としており、その貢献と制限、基礎となるモデリング原則、最適化課題、今後の方向性を強調している。
この調査が文学のギャップを埋め、この重要な領域における今後の研究を促進することを願っている。
さらに、関連する研究を https://github.com/AndrewZhou924/Awesome-model-inversion- attack で追跡するためのリポジトリも維持しています。
関連論文リスト
- Privacy Backdoors: Enhancing Membership Inference through Poisoning Pre-trained Models [112.48136829374741]
本稿では、プライバシーバックドア攻撃という新たな脆弱性を明らかにします。
被害者がバックドアモデルに微調整を行った場合、トレーニングデータは通常のモデルに微調整された場合よりも大幅に高い速度でリークされる。
我々の発見は、機械学習コミュニティにおける重要なプライバシー上の懸念を浮き彫りにし、オープンソースの事前訓練モデルの使用における安全性プロトコルの再評価を求めている。
論文 参考訳(メタデータ) (2024-04-01T16:50:54Z) - A Survey of Privacy-Preserving Model Explanations: Privacy Risks, Attacks, and Countermeasures [50.987594546912725]
AIのプライバシと説明可能性に関する研究が増えているにもかかわらず、プライバシを保存するモデル説明にはほとんど注意が払われていない。
本稿では,モデル説明に対するプライバシ攻撃とその対策に関する,最初の徹底的な調査を紹介する。
論文 参考訳(メタデータ) (2024-03-31T12:44:48Z) - Topological safeguard for evasion attack interpreting the neural
networks' behavior [0.0]
本研究は, 新規な回避攻撃検知装置の開発である。
入力サンプルが注入されたとき、モデルによって与えられるニューロンの活性化に関する情報に焦点を当てる。
この目的のためには、これらの情報をすべて検出器に導入するために、巨大なデータ前処理が必要である。
論文 参考訳(メタデータ) (2024-02-12T08:39:40Z) - Privacy Leakage on DNNs: A Survey of Model Inversion Attacks and Defenses [40.77270226912783]
Model Inversion(MI)攻撃は、トレーニングされたモデルへのアクセスを悪用することで、トレーニングデータセットに関するプライベート情報を開示する。
この分野の急速な進歩にもかかわらず、我々は既存のMI攻撃と防衛の包括的かつ体系的な概要を欠いている。
我々は,近年のDeep Neural Networks(DNN)に対する攻撃と防御を,複数のモダリティと学習タスクで詳細に分析し,比較する。
論文 参考訳(メタデータ) (2024-02-06T14:06:23Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
本稿では、未学習例の概念を再検討し、既存のロバストな誤り最小化ノイズが不正確な最適化目標であることを示す。
本稿では,計算時間要件の低減による保護性能の向上を図った新しい最適化パラダイムを提案する。
論文 参考訳(メタデータ) (2023-05-18T04:03:51Z) - Poisoning Attacks and Defenses on Artificial Intelligence: A Survey [3.706481388415728]
データ中毒攻撃は、トレーニングフェーズ中にモデルに供給されたデータサンプルを改ざんして、推論フェーズ中にモデルの精度を低下させる攻撃の一種である。
この研究は、この種の攻撃に対処する最新の文献で見つかった最も関連性の高い洞察と発見をまとめたものである。
実環境下での幅広いMLモデルに対するデータ中毒の影響を比較検討し,本研究の徹底的な評価を行った。
論文 参考訳(メタデータ) (2022-02-21T14:43:38Z) - Adversarial Machine Learning In Network Intrusion Detection Domain: A
Systematic Review [0.0]
ディープラーニングモデルは、誤った分類決定を行うためにモデルを誤解させる可能性のあるデータインスタンスに対して脆弱であることがわかった。
本調査では,ネットワーク侵入検出分野における敵機械学習のさまざまな側面を利用した研究について検討する。
論文 参考訳(メタデータ) (2021-12-06T19:10:23Z) - Privacy in Deep Learning: A Survey [16.278779275923448]
多くの分野でのディープラーニングの継続的な進歩は、プロダクションシステムにDeep Neural Networks(DNN)の採用につながっている。
大規模なデータセットと高い計算能力がこれらの進歩の主な貢献者である。
このデータはさまざまな脆弱性によって誤用または漏洩される可能性があるため、プライバシー上の深刻な懸念が生じる。
論文 参考訳(メタデータ) (2020-04-25T23:47:25Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。