Are Hyperbolic Representations in Graphs Created Equal?
- URL: http://arxiv.org/abs/2007.07698v1
- Date: Wed, 15 Jul 2020 14:14:14 GMT
- Title: Are Hyperbolic Representations in Graphs Created Equal?
- Authors: Max Kochurov, Sergey Ivanov, Eugeny Burnaev
- Abstract summary: We consider whether non-Euclidean embeddings are always useful for graph learning tasks.
We first fix an issue of the existing models associated with the optimization process at zero curvature.
We evaluate the approach of embedding graphs into the manifold in several graph representation learning tasks.
- Score: 1.80476943513092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently there was an increasing interest in applications of graph neural
networks in non-Euclidean geometry; however, are non-Euclidean representations
always useful for graph learning tasks? For different problems such as node
classification and link prediction we compute hyperbolic embeddings and
conclude that for tasks that require global prediction consistency it might be
useful to use non-Euclidean embeddings, while for other tasks Euclidean models
are superior. To do so we first fix an issue of the existing models associated
with the optimization process at zero curvature. Current hyperbolic models deal
with gradients at the origin in ad-hoc manner, which is inefficient and can
lead to numerical instabilities. We solve the instabilities of
kappa-Stereographic model at zero curvature cases and evaluate the approach of
embedding graphs into the manifold in several graph representation learning
tasks.
Related papers
- Shedding Light on Problems with Hyperbolic Graph Learning [2.3743504594834635]
Recent papers in the graph machine learning literature have introduced a number of approaches for hyperbolic representation learning.
We take a careful look at the field of hyperbolic graph representation learning as it stands today.
We find that a number of papers fail to diligently present baselines, make faulty modelling assumptions when constructing algorithms, and use misleading metrics to quantify geometry of graph datasets.
arXiv Detail & Related papers (2024-11-11T03:12:41Z) - Graph data augmentation with Gromow-Wasserstein Barycenters [0.0]
It has been proposed a novel augmentation strategy for graphs that operates in a non-Euclidean space.
A non-Euclidean distance, specifically the Gromow-Wasserstein distance, results in better approximations of the graphon.
This framework also provides a means to validate different graphon estimation approaches.
arXiv Detail & Related papers (2024-04-12T10:22:55Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Tight and fast generalization error bound of graph embedding in metric
space [54.279425319381374]
We show that graph embedding in non-Euclidean metric space can outperform that in Euclidean space with much smaller training data than the existing bound has suggested.
Our new upper bound is significantly tighter and faster than the existing one, which can be exponential to $R$ and $O(frac1S)$ at the fastest.
arXiv Detail & Related papers (2023-05-13T17:29:18Z) - Unveiling the Sampling Density in Non-Uniform Geometric Graphs [69.93864101024639]
We consider graphs as geometric graphs: nodes are randomly sampled from an underlying metric space, and any pair of nodes is connected if their distance is less than a specified neighborhood radius.
In a social network communities can be modeled as densely sampled areas, and hubs as nodes with larger neighborhood radius.
We develop methods to estimate the unknown sampling density in a self-supervised fashion.
arXiv Detail & Related papers (2022-10-15T08:01:08Z) - Graphon-aided Joint Estimation of Multiple Graphs [24.077455621015552]
We consider the problem of estimating the topology of multiple networks from nodal observations.
We adopt a graphon as our random graph model, which is a nonparametric model from which graphs of potentially different sizes can be drawn.
arXiv Detail & Related papers (2022-02-11T15:20:44Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
Semi-supervised learning (SSL) over graph-structured data emerges in many network science applications.
To efficiently manage learning over graphs, variants of graph neural networks (GNNs) have been developed recently.
Despite their success in practice, most of existing methods are unable to handle graphs with uncertain nodal attributes.
Challenges also arise due to distributional uncertainties associated with data acquired by noisy measurements.
A distributionally robust learning framework is developed, where the objective is to train models that exhibit quantifiable robustness against perturbations.
arXiv Detail & Related papers (2021-10-20T14:23:54Z) - Graphon based Clustering and Testing of Networks: Algorithms and Theory [11.3700474413248]
Network-valued data are encountered in a wide range of applications and pose challenges in learning.
We present two clustering algorithms that achieve state-of-the-art results.
We further study the applicability of the proposed distance for graph two-sample testing problems.
arXiv Detail & Related papers (2021-10-06T13:14:44Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Non-Parametric Graph Learning for Bayesian Graph Neural Networks [35.88239188555398]
We propose a novel non-parametric graph model for constructing the posterior distribution of graph adjacency matrices.
We demonstrate the advantages of this model in three different problem settings: node classification, link prediction and recommendation.
arXiv Detail & Related papers (2020-06-23T21:10:55Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
Graph representation learning has achieved a remarkable success in many graph-based applications, such as node classification, prediction, and community detection.
However, for some kind of graph applications, such as graph compression and edge partition, it is very hard to reduce them to some graph representation learning tasks.
In this paper, we propose to attack the graph ordering problem behind such applications by a novel learning approach.
arXiv Detail & Related papers (2020-01-18T09:14:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.