Graphon based Clustering and Testing of Networks: Algorithms and Theory
- URL: http://arxiv.org/abs/2110.02722v1
- Date: Wed, 6 Oct 2021 13:14:44 GMT
- Title: Graphon based Clustering and Testing of Networks: Algorithms and Theory
- Authors: Mahalakshmi Sabanayagam, Leena Chennuru Vankadara, Debarghya
Ghoshdastidar
- Abstract summary: Network-valued data are encountered in a wide range of applications and pose challenges in learning.
We present two clustering algorithms that achieve state-of-the-art results.
We further study the applicability of the proposed distance for graph two-sample testing problems.
- Score: 11.3700474413248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Network-valued data are encountered in a wide range of applications and pose
challenges in learning due to their complex structure and absence of vertex
correspondence. Typical examples of such problems include classification or
grouping of protein structures and social networks. Various methods, ranging
from graph kernels to graph neural networks, have been proposed that achieve
some success in graph classification problems. However, most methods have
limited theoretical justification, and their applicability beyond
classification remains unexplored. In this work, we propose methods for
clustering multiple graphs, without vertex correspondence, that are inspired by
the recent literature on estimating graphons -- symmetric functions
corresponding to infinite vertex limit of graphs. We propose a novel graph
distance based on sorting-and-smoothing graphon estimators. Using the proposed
graph distance, we present two clustering algorithms and show that they achieve
state-of-the-art results. We prove the statistical consistency of both
algorithms under Lipschitz assumptions on the graph degrees. We further study
the applicability of the proposed distance for graph two-sample testing
problems.
Related papers
- NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering [15.764819403555512]
It is impossible to first identify a graph as homophilic or heterophilic before a suitable GNN model can be found.
We propose a novel graph clustering method, which contains three key components: graph reconstruction, a mixed filter, and dual graph clustering network.
Our method dominates others on heterophilic graphs.
arXiv Detail & Related papers (2023-05-03T01:49:01Z) - Deep Graph-Level Clustering Using Pseudo-Label-Guided Mutual Information
Maximization Network [31.38584638254226]
We study the problem of partitioning a set of graphs into different groups such that the graphs in the same group are similar while the graphs in different groups are dissimilar.
To solve the problem, we propose a novel method called Deep Graph-Level Clustering (DGLC)
Our DGLC achieves graph-level representation learning and graph-level clustering in an end-to-end manner.
arXiv Detail & Related papers (2023-02-05T12:28:08Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - Graphon-aided Joint Estimation of Multiple Graphs [24.077455621015552]
We consider the problem of estimating the topology of multiple networks from nodal observations.
We adopt a graphon as our random graph model, which is a nonparametric model from which graphs of potentially different sizes can be drawn.
arXiv Detail & Related papers (2022-02-11T15:20:44Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z) - Second-Order Pooling for Graph Neural Networks [62.13156203025818]
We propose to use second-order pooling as graph pooling, which naturally solves the above challenges.
We show that direct use of second-order pooling with graph neural networks leads to practical problems.
We propose two novel global graph pooling methods based on second-order pooling; namely, bilinear mapping and attentional second-order pooling.
arXiv Detail & Related papers (2020-07-20T20:52:36Z) - Graph topology inference benchmarks for machine learning [16.857405938139525]
We introduce several benchmarks specifically designed to reveal the relative merits and limitations of graph inference methods.
We also contrast some of the most prominent techniques in the literature.
arXiv Detail & Related papers (2020-07-16T09:40:32Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.