論文の概要: Deep Representation Learning and Clustering of Traffic Scenarios
- arxiv url: http://arxiv.org/abs/2007.07740v1
- Date: Wed, 15 Jul 2020 15:12:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 05:01:12.625308
- Title: Deep Representation Learning and Clustering of Traffic Scenarios
- Title(参考訳): 交通シナリオの深層表現学習とクラスタリング
- Authors: Nick Harmening, Marin Bilo\v{s}, Stephan G\"unnemann
- Abstract要約: トラフィックシーンの遅延表現を学習する2つのデータ駆動自動符号化モデルを導入する。
本稿では,遅延シナリオの埋め込みがトラフィックシナリオのクラスタリングや類似性検索にどのように使用できるかを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Determining the traffic scenario space is a major challenge for the
homologation and coverage assessment of automated driving functions. In
contrast to current approaches that are mainly scenario-based and rely on
expert knowledge, we introduce two data driven autoencoding models that learn a
latent representation of traffic scenes. First is a CNN based spatio-temporal
model that autoencodes a grid of traffic participants' positions. Secondly, we
develop a pure temporal RNN based model that auto-encodes a sequence of sets.
To handle the unordered set data, we had to incorporate the permutation
invariance property. Finally, we show how the latent scenario embeddings can be
used for clustering traffic scenarios and similarity retrieval.
- Abstract(参考訳): 交通シナリオ空間の決定は、自動運転機能のホモログ化とカバレッジ評価において大きな課題である。
シナリオベースで専門知識に依存する現在のアプローチとは対照的に,トラヒックシーンの潜在表現を学習する2つのデータ駆動オートエンコーディングモデルを導入する。
まず、CNNベースの時空間モデルで、交通参加者の位置のグリッドを自動エンコードする。
第2に,集合列を自動符号化する純粋時間的RNNモデルを開発する。
非順序集合データを扱うためには、置換不変性を組み込む必要がある。
最後に、遅延シナリオの埋め込みがトラフィックシナリオのクラスタリングや類似性検索にどのように使用できるかを示す。
関連論文リスト
- BjTT: A Large-scale Multimodal Dataset for Traffic Prediction [49.93028461584377]
従来の交通予測手法は、交通トレンドを予測するために、過去の交通データに依存している。
本研究では,交通システムを記述するテキストと生成モデルを組み合わせることで,交通生成にどのように応用できるかを考察する。
本稿では,テキスト・トラフィック生成のための最初の拡散モデルChatTrafficを提案する。
論文 参考訳(メタデータ) (2024-03-08T04:19:56Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
自動運転開発における長年の課題は、記録された運転ログからシードされた動的運転シナリオをシミュレートすることだ。
車両、歩行者、サイクリストが運転シナリオでどのように相互作用するかをモデル化するために、離散シーケンスモデリングのツールを適用します。
我々のモデルはSim Agents Benchmarkを上回り、リアリズムメタメトリックの先行作業の3.3%、インタラクションメトリックの9.9%を上回ります。
論文 参考訳(メタデータ) (2023-12-07T18:53:27Z) - Graph Convolutional Networks for Complex Traffic Scenario Classification [0.7919810878571297]
シナリオベースのテストアプローチは、自動運転システムの安全性の統計的に重要な証拠を得るのに必要な時間を短縮することができる。
シナリオ分類のほとんどの方法は、多様な環境を持つ複雑なシナリオでは機能しない。
本研究では,車両と環境との相互作用をモデル化できる複雑な交通シナリオ分類手法を提案する。
論文 参考訳(メタデータ) (2023-10-26T20:51:24Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
我々は,データ駆動型交通シミュレーションを世界モデルとして定式化できることを示した。
動作予測とエンドツーエンドの運転に基づくマルチエージェントポリシーであるTrafficBotsを紹介する。
オープンモーションデータセットの実験は、TrafficBotsが現実的なマルチエージェント動作をシミュレートできることを示している。
論文 参考訳(メタデータ) (2023-03-07T18:28:41Z) - Fully End-to-end Autonomous Driving with Semantic Depth Cloud Mapping
and Multi-Agent [2.512827436728378]
本稿では,エンド・ツー・エンドとマルチタスクの学習方法を用いて学習した新しいディープラーニングモデルを提案する。
このモデルは,CARLAシミュレータ上で,現実の環境を模倣するために,通常の状況と異なる天候のシナリオを用いて評価する。
論文 参考訳(メタデータ) (2022-04-12T03:57:01Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
運転行動認識のための軌道情報に基づくニューラルネットワークモデルを提案する。
提案手法を公開BLVDデータセット上で評価し,満足な性能を実現する。
論文 参考訳(メタデータ) (2021-03-01T06:47:29Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
異種情報ネットワークの特徴を捉えるための自己教師付き事前学習・微調整フレームワークPF-HINを提案する。
PF-HINは4つのデータセットにおいて、各タスクにおける最先端の代替よりも一貫して、大幅に優れています。
論文 参考訳(メタデータ) (2020-07-07T03:36:28Z) - Spatio-Temporal Point Processes with Attention for Traffic Congestion
Event Modeling [28.994426283738363]
本稿では,道路ネットワーク上での交通渋滞イベントをモデル化するための新しいフレームワークを提案する。
交通センサからのカウントデータと交通事故を報告した警察の報告を組み合わせることで、マルチモーダルデータを用いて、渋滞イベントに対する2種類のトリガー効果を捉えることを目指す。
ある場所での現在の交通渋滞は、将来の道路網の混雑を引き起こす可能性があり、交通事故は広範な交通渋滞を引き起こす可能性がある。
論文 参考訳(メタデータ) (2020-05-15T04:22:18Z) - Understanding Dynamic Scenes using Graph Convolution Networks [22.022759283770377]
本稿では,移動カメラが捉えた時間順のフレーム列から道路車両の挙動をモデル化する新しい枠組みを提案する。
微調整に頼らずに複数のデータセットへの学習のシームレスな移行を示す。
このような振る舞い予測手法は,様々なナビゲーションタスクにおいて即時関連性を見出す。
論文 参考訳(メタデータ) (2020-05-09T13:05:06Z) - Cross Scene Prediction via Modeling Dynamic Correlation using Latent
Space Shared Auto-Encoders [6.530318792830862]
2つのシーンの非同期な履歴観測のセットを考えると、その目的はクロスシーンの予測器を学習することである。
遅延空間共有オートエンコーダを用いた動的相関のモデル化により,この問題の解法を提案する。
論文 参考訳(メタデータ) (2020-03-31T03:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。