Deep Representation Learning and Clustering of Traffic Scenarios
- URL: http://arxiv.org/abs/2007.07740v1
- Date: Wed, 15 Jul 2020 15:12:23 GMT
- Title: Deep Representation Learning and Clustering of Traffic Scenarios
- Authors: Nick Harmening, Marin Bilo\v{s}, Stephan G\"unnemann
- Abstract summary: We introduce two data driven autoencoding models that learn latent representation of traffic scenes.
We show how the latent scenario embeddings can be used for clustering traffic scenarios and similarity retrieval.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Determining the traffic scenario space is a major challenge for the
homologation and coverage assessment of automated driving functions. In
contrast to current approaches that are mainly scenario-based and rely on
expert knowledge, we introduce two data driven autoencoding models that learn a
latent representation of traffic scenes. First is a CNN based spatio-temporal
model that autoencodes a grid of traffic participants' positions. Secondly, we
develop a pure temporal RNN based model that auto-encodes a sequence of sets.
To handle the unordered set data, we had to incorporate the permutation
invariance property. Finally, we show how the latent scenario embeddings can be
used for clustering traffic scenarios and similarity retrieval.
Related papers
- BjTT: A Large-scale Multimodal Dataset for Traffic Prediction [49.93028461584377]
Traditional traffic prediction methods rely on historical traffic data to predict traffic trends.
In this work, we explore how generative models combined with text describing the traffic system can be applied for traffic generation.
We propose ChatTraffic, the first diffusion model for text-to-traffic generation.
arXiv Detail & Related papers (2024-03-08T04:19:56Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Graph Convolutional Networks for Complex Traffic Scenario Classification [0.7919810878571297]
A scenario-based testing approach can reduce the time required to obtain statistically significant evidence of the safety of Automated Driving Systems.
Most methods on scenario classification do not work for complex scenarios with diverse environments.
We propose a method for complex traffic scenario classification that is able to model the interaction of a vehicle with the environment.
arXiv Detail & Related papers (2023-10-26T20:51:24Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Fully End-to-end Autonomous Driving with Semantic Depth Cloud Mapping
and Multi-Agent [2.512827436728378]
We propose a novel deep learning model trained with end-to-end and multi-task learning manners to perform both perception and control tasks simultaneously.
The model is evaluated on CARLA simulator with various scenarios made of normal-adversarial situations and different weathers to mimic real-world conditions.
arXiv Detail & Related papers (2022-04-12T03:57:01Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
We propose a neural network model based on trajectories information for driving behavior recognition.
We evaluate the proposed model on the public BLVD dataset, achieving a satisfying performance.
arXiv Detail & Related papers (2021-03-01T06:47:29Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
We propose a self-supervised pre-training and fine-tuning framework, PF-HIN, to capture the features of a heterogeneous information network.
PF-HIN consistently and significantly outperforms state-of-the-art alternatives on each of these tasks, on four datasets.
arXiv Detail & Related papers (2020-07-07T03:36:28Z) - Spatio-Temporal Point Processes with Attention for Traffic Congestion
Event Modeling [28.994426283738363]
We present a novel framework for modeling traffic congestion events over road networks.
Using multi-modal data by combining count data from traffic sensors with police reports that report traffic incidents, we aim to capture two types of triggering effect for congestion events.
Current traffic congestion at one location may cause future congestion over the road network, and traffic incidents may cause spread traffic congestion.
arXiv Detail & Related papers (2020-05-15T04:22:18Z) - Understanding Dynamic Scenes using Graph Convolution Networks [22.022759283770377]
We present a novel framework to model on-road vehicle behaviors from a sequence of temporally ordered frames as grabbed by a moving camera.
We show a seamless transfer of learning to multiple datasets without resorting to fine-tuning.
Such behavior prediction methods find immediate relevance in a variety of navigation tasks.
arXiv Detail & Related papers (2020-05-09T13:05:06Z) - Cross Scene Prediction via Modeling Dynamic Correlation using Latent
Space Shared Auto-Encoders [6.530318792830862]
Given a set of unsynchronized history observations of two scenes, the purpose is to learn a cross-scene predictor.
A method is proposed to solve the problem via modeling dynamic correlation using latent space shared auto-encoders.
arXiv Detail & Related papers (2020-03-31T03:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.