論文の概要: Stutter Diagnosis and Therapy System Based on Deep Learning
- arxiv url: http://arxiv.org/abs/2007.08003v1
- Date: Mon, 13 Jul 2020 10:24:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-10 23:50:28.539754
- Title: Stutter Diagnosis and Therapy System Based on Deep Learning
- Title(参考訳): 深層学習に基づくスタッタ診断・治療システム
- Authors: Gresha Bhatia, Binoy Saha, Mansi Khamkar, Ashish Chandwani, Reshma
Khot
- Abstract要約: スタッタリング(stammering)は、音声の連続性を破るコミュニケーション障害である。
本稿では,MFCC音声特徴に対するGated Recurrent CNNを用いたスタッター診断エージェントの実装と,SVMを用いた治療勧告エージェントの実装に焦点を当てた。
- 参考スコア(独自算出の注目度): 2.3581263491506097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stuttering, also called stammering, is a communication disorder that breaks
the continuity of the speech. This program of work is an attempt to develop
automatic recognition procedures to assess stuttered dysfluencies and use these
assessments to filter out speech therapies for an individual. Stuttering may be
in the form of repetitions, prolongations or abnormal stoppages of sounds and
syllables. Our system aims to help stutterers by diagnosing the severity and
type of stutter and also by suggesting appropriate therapies for practice by
learning the correlation between stutter descriptors and the effectiveness of
speech therapies on them. This paper focuses on the implementation of a stutter
diagnosis agent using Gated Recurrent CNN on MFCC audio features and therapy
recommendation agent using SVM. It also presents the results obtained and
various key findings of the system developed.
- Abstract(参考訳): シュタリング(stuttering)またはシュタミング(stammering)は、発話の連続性を損なうコミュニケーション障害である。
この作業プログラムは、混乱した流血を評価できる自動認識手順を開発し、これらの評価を用いて個人の音声治療をフィルターする試みである。
発声は、繰り返し、延長、または音節や音節の異常な停止の形で行われることがある。
本システムでは,ストッターの重症度とタイプを把握し,またストッター記述子と音声治療の効果との相関を学習し,実践のための適切な治療を提案することで,ストッターを支援することを目的としている。
本稿では,MFCC音声特徴に対するGated Recurrent CNNを用いたスタッター診断エージェントの実装と,SVMを用いた治療勧告エージェントの実装に焦点を当てた。
また, 得られた結果と, 開発したシステムの様々な重要な知見を提示する。
関連論文リスト
- Self-supervised Speech Models for Word-Level Stuttered Speech Detection [66.46810024006712]
自己教師付き音声モデルを利用した単語レベルの発声音声検出モデルを提案する。
本評価は, 単語レベルの発声検出において, 従来の手法を超越していることを示す。
論文 参考訳(メタデータ) (2024-09-16T20:18:20Z) - Selfsupervised learning for pathological speech detection [0.0]
音声生成は、様々な神経変性疾患による影響と破壊を受けやすい。
これらの障害は、異常な発声パターンと不正確な調音を特徴とする病的発声を引き起こす。
ニューロタイプ話者とは異なり、言語障害や障害のある患者は、AlexaやSiriなど、さまざまなバーチャルアシスタントにアクセスできない。
論文 参考訳(メタデータ) (2024-05-16T07:12:47Z) - DisfluencyFixer: A tool to enhance Language Learning through Speech To
Speech Disfluency Correction [50.51901599433536]
DisfluencyFixerは、英語とヒンディー語で音声から音声への拡散補正を行うツールである。
提案システムでは,入力音声からの拡散を除去し,出力として流速音声を返却する。
論文 参考訳(メタデータ) (2023-05-26T14:13:38Z) - Detecting Dysfluencies in Stuttering Therapy Using wav2vec 2.0 [0.22940141855172028]
英語コーパスのスタブリング分類のための微調整wav2vec 2.0は、汎用的特徴の有効性を高める。
本稿では、Fluencybankとドイツのセラピー中心のKassel State of Fluencyデータセットについて評価する。
論文 参考訳(メタデータ) (2022-04-07T13:02:12Z) - KSoF: The Kassel State of Fluency Dataset -- A Therapy Centered Dataset
of Stuttering [58.91587609873915]
この研究で紹介されるKassel State of Fluency (KSoF)は、治療ベースのデータセットで、5500以上の散在するPWSのクリップを含んでいる。
オーディオは、Institut der Kasseler Stottertherapieのセラピーセッション中に録音された。
論文 参考訳(メタデータ) (2022-03-10T14:17:07Z) - Investigation of Data Augmentation Techniques for Disordered Speech
Recognition [69.50670302435174]
本稿では,不規則音声認識のための一連のデータ拡張手法について検討する。
正常な音声と無秩序な音声の両方が増強過程に利用された。
UASpeechコーパスを用いた最終話者適応システムと、最大2.92%の絶対単語誤り率(WER)の速度摂動に基づく最良の拡張アプローチ
論文 参考訳(メタデータ) (2022-01-14T17:09:22Z) - STAN: A stuttering therapy analysis helper [59.37911277681339]
発声は、繰り返し、音、音節または単語の延長、発話中のブロックによって識別される複雑な音声障害である。
本稿では, 言語療法士を支援するシステムSTANについて紹介する。
論文 参考訳(メタデータ) (2021-06-15T13:48:12Z) - NUVA: A Naming Utterance Verifier for Aphasia Treatment [49.114436579008476]
失語症(PWA)患者の治療介入に対する反応の診断とモニタリングの両立のための画像命名タスクを用いた音声性能評価
本稿では,失語症脳卒中患者の「正しい」と「正しくない」を分類する深層学習要素を組み込んだ発話検証システムであるNUVAについて述べる。
イギリス系英語8ヶ国語でのテストでは、システムの性能精度は83.6%から93.6%の範囲であり、10倍のクロスバリデーション平均は89.5%であった。
論文 参考訳(メタデータ) (2021-02-10T13:00:29Z) - Towards Automated Assessment of Stuttering and Stuttering Therapy [0.22940141855172028]
発声は複雑な発声障害であり、繰り返し、音、音節または単語の延長、発話中のブロックによって識別できる。
発声重大度評価の一般的な方法は、発声中の3つの最長発声症状の平均である発声音節(%SS)、最近導入された発声効率スコア(SES)などがある。
本稿では,スタブリングの重症度を評価する新しい手法である音声制御指標(SCI)を提案する。
論文 参考訳(メタデータ) (2020-06-16T14:50:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。