Federated Learning in Mobile Edge Computing: An Edge-Learning
Perspective for Beyond 5G
- URL: http://arxiv.org/abs/2007.08030v1
- Date: Wed, 15 Jul 2020 22:58:47 GMT
- Title: Federated Learning in Mobile Edge Computing: An Edge-Learning
Perspective for Beyond 5G
- Authors: Shashank Jere, Qiang Fan, Bodong Shang, Lianjun Li and Lingjia Liu
- Abstract summary: A novel edge computing-assisted federated learning framework is proposed in this paper.
The communication constraints between IoT devices and edge servers are taken into account.
Various IoT devices have different training datasets which have varying influence on the accuracy of the global model derived at the edge server.
- Score: 24.275726025778482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Owing to the large volume of sensed data from the enormous number of IoT
devices in operation today, centralized machine learning algorithms operating
on such data incur an unbearable training time, and thus cannot satisfy the
requirements of delay-sensitive inference applications. By provisioning
computing resources at the network edge, Mobile Edge Computing (MEC) has become
a promising technology capable of collaborating with distributed IoT devices to
facilitate federated learning, and thus realize real-time training. However,
considering the large volume of sensed data and the limited resources of both
edge servers and IoT devices, it is challenging to ensure the training
efficiency and accuracy of delay-sensitive training tasks. Thus, in this paper,
we design a novel edge computing-assisted federated learning framework, in
which the communication constraints between IoT devices and edge servers and
the effect of various IoT devices on the training accuracy are taken into
account. On one hand, we employ machine learning methods to dynamically
configure the communication resources in real-time to accelerate the
interactions between IoT devices and edge servers, thus improving the training
efficiency of federated learning. On the other hand, as various IoT devices
have different training datasets which have varying influence on the accuracy
of the global model derived at the edge server, an IoT device selection scheme
is designed to improve the training accuracy under the resource constraints at
edge servers. Extensive simulations have been conducted to demonstrate the
performance of the introduced edge computing-assisted federated learning
framework.
Related papers
- CRSFL: Cluster-based Resource-aware Split Federated Learning for Continuous Authentication [5.636155173401658]
Split Learning (SL) and Federated Learning (FL) have emerged as promising technologies for training a decentralized Machine Learning (ML) model.
We propose combining these technologies to address the continuous authentication challenge while protecting user privacy.
arXiv Detail & Related papers (2024-05-12T06:08:21Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Efficient Asynchronous Federated Learning with Sparsification and
Quantization [55.6801207905772]
Federated Learning (FL) is attracting more and more attention to collaboratively train a machine learning model without transferring raw data.
FL generally exploits a parameter server and a large number of edge devices during the whole process of the model training.
We propose TEASQ-Fed to exploit edge devices to asynchronously participate in the training process by actively applying for tasks.
arXiv Detail & Related papers (2023-12-23T07:47:07Z) - Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving
for Internet of Things [4.68267059122563]
We present an innovative Edge-assisted U-Shaped Split Federated Learning (EUSFL) framework, which harnesses the high-performance capabilities of edge servers.
In this framework, we leverage Federated Learning (FL) to enable data holders to collaboratively train models without sharing their data.
We also propose a novel noise mechanism called LabelDP to ensure that data features and labels can securely resist reconstruction attacks.
arXiv Detail & Related papers (2023-11-08T05:14:41Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
We build a FedIoT platform that contains a synthesized dataset using N-BaIoT, FedDetect algorithm, and a system design for IoT devices.
In a network of realistic IoT devices (PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance.
arXiv Detail & Related papers (2021-06-15T08:53:42Z) - Reliable Fleet Analytics for Edge IoT Solutions [0.0]
We propose a framework for facilitating machine learning at the edge for AIoT applications.
The contribution is an architecture that includes services, tools, and methods for delivering fleet analytics at scale.
We present a preliminary validation of the framework by performing experiments with IoT devices on a university campus's rooms.
arXiv Detail & Related papers (2021-01-12T11:28:43Z) - To Talk or to Work: Flexible Communication Compression for Energy
Efficient Federated Learning over Heterogeneous Mobile Edge Devices [78.38046945665538]
federated learning (FL) over massive mobile edge devices opens new horizons for numerous intelligent mobile applications.
FL imposes huge communication and computation burdens on participating devices due to periodical global synchronization and continuous local training.
We develop a convergence-guaranteed FL algorithm enabling flexible communication compression.
arXiv Detail & Related papers (2020-12-22T02:54:18Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Toward Multiple Federated Learning Services Resource Sharing in Mobile
Edge Networks [88.15736037284408]
We study a new model of multiple federated learning services at the multi-access edge computing server.
We propose a joint resource optimization and hyper-learning rate control problem, namely MS-FEDL.
Our simulation results demonstrate the convergence performance of our proposed algorithms.
arXiv Detail & Related papers (2020-11-25T01:29:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.