Reliable Fleet Analytics for Edge IoT Solutions
- URL: http://arxiv.org/abs/2101.04414v1
- Date: Tue, 12 Jan 2021 11:28:43 GMT
- Title: Reliable Fleet Analytics for Edge IoT Solutions
- Authors: Emmanuel Raj, Magnus Westerlund, Leonardo Espinosa-Leal
- Abstract summary: We propose a framework for facilitating machine learning at the edge for AIoT applications.
The contribution is an architecture that includes services, tools, and methods for delivering fleet analytics at scale.
We present a preliminary validation of the framework by performing experiments with IoT devices on a university campus's rooms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent years we have witnessed a boom in Internet of Things (IoT) device
deployments, which has resulted in big data and demand for low-latency
communication. This shift in the demand for infrastructure is also enabling
real-time decision making using artificial intelligence for IoT applications.
Artificial Intelligence of Things (AIoT) is the combination of Artificial
Intelligence (AI) technologies and the IoT infrastructure to provide robust and
efficient operations and decision making. Edge computing is emerging to enable
AIoT applications. Edge computing enables generating insights and making
decisions at or near the data source, reducing the amount of data sent to the
cloud or a central repository. In this paper, we propose a framework for
facilitating machine learning at the edge for AIoT applications, to enable
continuous delivery, deployment, and monitoring of machine learning models at
the edge (Edge MLOps). The contribution is an architecture that includes
services, tools, and methods for delivering fleet analytics at scale. We
present a preliminary validation of the framework by performing experiments
with IoT devices on a university campus's rooms. For the machine learning
experiments, we forecast multivariate time series for predicting air quality in
the respective rooms by using the models deployed in respective edge devices.
By these experiments, we validate the proposed fleet analytics framework for
efficiency and robustness.
Related papers
- Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving
for Internet of Things [4.68267059122563]
We present an innovative Edge-assisted U-Shaped Split Federated Learning (EUSFL) framework, which harnesses the high-performance capabilities of edge servers.
In this framework, we leverage Federated Learning (FL) to enable data holders to collaboratively train models without sharing their data.
We also propose a novel noise mechanism called LabelDP to ensure that data features and labels can securely resist reconstruction attacks.
arXiv Detail & Related papers (2023-11-08T05:14:41Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Federated Learning for Internet of Things: A Federated Learning
Framework for On-device Anomaly Data Detection [10.232121085973782]
We build a FedIoT platform that contains a synthesized dataset using N-BaIoT, FedDetect algorithm, and a system design for IoT devices.
In a network of realistic IoT devices (PI), we evaluate FedIoT platform and FedDetect algorithm in both model and system performance.
arXiv Detail & Related papers (2021-06-15T08:53:42Z) - Pervasive AI for IoT Applications: Resource-efficient Distributed
Artificial Intelligence [45.076180487387575]
Artificial intelligence (AI) has witnessed a substantial breakthrough in a variety of Internet of Things (IoT) applications and services.
This is driven by the easier access to sensory data and the enormous scale of pervasive/ubiquitous devices that generate zettabytes (ZB) of real-time data streams.
The confluence of pervasive computing and artificial intelligence, Pervasive AI, expanded the role of ubiquitous IoT systems.
arXiv Detail & Related papers (2021-05-04T23:42:06Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Optimizing Resource-Efficiency for Federated Edge Intelligence in IoT
Networks [96.24723959137218]
We study an edge intelligence-based IoT network in which a set of edge servers learn a shared model using federated learning (FL)
We propose a novel framework, called federated edge intelligence (FEI), that allows edge servers to evaluate the required number of data samples according to the energy cost of the IoT network.
We prove that our proposed algorithm does not cause any data leakage nor disclose any topological information of the IoT network.
arXiv Detail & Related papers (2020-11-25T12:51:59Z) - Federated Learning in Mobile Edge Computing: An Edge-Learning
Perspective for Beyond 5G [24.275726025778482]
A novel edge computing-assisted federated learning framework is proposed in this paper.
The communication constraints between IoT devices and edge servers are taken into account.
Various IoT devices have different training datasets which have varying influence on the accuracy of the global model derived at the edge server.
arXiv Detail & Related papers (2020-07-15T22:58:47Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - LIMITS: Lightweight Machine Learning for IoT Systems with Resource
Limitations [8.647853543335662]
We present the novel open source framework LIghtweight Machine learning for IoT Systems (LIMITS)
LIMITS applies a platform-in-the-loop approach explicitly considering the actual compilation toolchain of the target IoT platform.
We apply and validate LIMITS in two case studies focusing on cellular data rate prediction and radio-based vehicle classification.
arXiv Detail & Related papers (2020-01-28T06:34:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.