Suppress and Balance: A Simple Gated Network for Salient Object
Detection
- URL: http://arxiv.org/abs/2007.08074v3
- Date: Mon, 27 Jul 2020 09:34:12 GMT
- Title: Suppress and Balance: A Simple Gated Network for Salient Object
Detection
- Authors: Xiaoqi Zhao, Youwei Pang, Lihe Zhang, Huchuan Lu, Lei Zhang
- Abstract summary: We propose a simple gated network (GateNet) to solve both issues at once.
With the help of multilevel gate units, the valuable context information from the encoder can be optimally transmitted to the decoder.
In addition, we adopt the atrous spatial pyramid pooling based on the proposed "Fold" operation (Fold-ASPP) to accurately localize salient objects of various scales.
- Score: 89.88222217065858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most salient object detection approaches use U-Net or feature pyramid
networks (FPN) as their basic structures. These methods ignore two key problems
when the encoder exchanges information with the decoder: one is the lack of
interference control between them, the other is without considering the
disparity of the contributions of different encoder blocks. In this work, we
propose a simple gated network (GateNet) to solve both issues at once. With the
help of multilevel gate units, the valuable context information from the
encoder can be optimally transmitted to the decoder. We design a novel gated
dual branch structure to build the cooperation among different levels of
features and improve the discriminability of the whole network. Through the
dual branch design, more details of the saliency map can be further restored.
In addition, we adopt the atrous spatial pyramid pooling based on the proposed
"Fold" operation (Fold-ASPP) to accurately localize salient objects of various
scales. Extensive experiments on five challenging datasets demonstrate that the
proposed model performs favorably against most state-of-the-art methods under
different evaluation metrics.
Related papers
- Reversible Decoupling Network for Single Image Reflection Removal [15.763420129991255]
High-level semantic clues tend to be compressed or discarded during layer-by-layer propagation.
We propose a novel architecture called Reversible Decoupling Network (RDNet)
RDNet employs a reversible encoder to secure valuable information while flexibly decoupling transmission- and reflection-relevant features during the forward pass.
arXiv Detail & Related papers (2024-10-10T15:58:27Z) - Object Segmentation by Mining Cross-Modal Semantics [68.88086621181628]
We propose a novel approach by mining the Cross-Modal Semantics to guide the fusion and decoding of multimodal features.
Specifically, we propose a novel network, termed XMSNet, consisting of (1) all-round attentive fusion (AF), (2) coarse-to-fine decoder (CFD), and (3) cross-layer self-supervision.
arXiv Detail & Related papers (2023-05-17T14:30:11Z) - Towards Diverse Binary Segmentation via A Simple yet General Gated Network [71.19503376629083]
We propose a simple yet general gated network (GateNet) to tackle binary segmentation tasks.
With the help of multi-level gate units, the valuable context information from the encoder can be selectively transmitted to the decoder.
We introduce a "Fold" operation to improve the atrous convolution and form a novel folded atrous convolution.
arXiv Detail & Related papers (2023-03-18T11:26:36Z) - Effective and Interpretable Information Aggregation with Capacity
Networks [3.4012007729454807]
Capacity networks generate multiple interpretable intermediate results which can be aggregated in a semantically meaningful space.
Our experiments show that implementing this simple inductive bias leads to improvements over different encoder-decoder architectures.
arXiv Detail & Related papers (2022-07-25T09:45:16Z) - Multi-scale and Cross-scale Contrastive Learning for Semantic
Segmentation [5.281694565226513]
We apply contrastive learning to enhance the discriminative power of the multi-scale features extracted by semantic segmentation networks.
By first mapping the encoder's multi-scale representations to a common feature space, we instantiate a novel form of supervised local-global constraint.
arXiv Detail & Related papers (2022-03-25T01:24:24Z) - LC3Net: Ladder context correlation complementary network for salient
object detection [0.32116198597240836]
We propose a novel ladder context correlation complementary network (LC3Net)
FCB is a filterable convolution block to assist the automatic collection of information on the diversity of initial features.
DCM is a dense cross module to facilitate the intimate aggregation of different levels of features.
BCD is a bidirectional compression decoder to help the progressive shrinkage of multi-scale features.
arXiv Detail & Related papers (2021-10-21T03:12:32Z) - Crosslink-Net: Double-branch Encoder Segmentation Network via Fusing
Vertical and Horizontal Convolutions [58.71117402626524]
We present a novel double-branch encoder architecture for medical image segmentation.
Our architecture is inspired by two observations: 1) Since the discrimination of features learned via square convolutional kernels needs to be further improved, we propose to utilize non-square vertical and horizontal convolutional kernels.
The experiments validate the effectiveness of our model on four datasets.
arXiv Detail & Related papers (2021-07-24T02:58:32Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - Beyond Single Stage Encoder-Decoder Networks: Deep Decoders for Semantic
Image Segmentation [56.44853893149365]
Single encoder-decoder methodologies for semantic segmentation are reaching their peak in terms of segmentation quality and efficiency per number of layers.
We propose a new architecture based on a decoder which uses a set of shallow networks for capturing more information content.
In order to further improve the architecture we introduce a weight function which aims to re-balance classes to increase the attention of the networks to under-represented objects.
arXiv Detail & Related papers (2020-07-19T18:44:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.