Reversible Decoupling Network for Single Image Reflection Removal
- URL: http://arxiv.org/abs/2410.08063v1
- Date: Thu, 10 Oct 2024 15:58:27 GMT
- Title: Reversible Decoupling Network for Single Image Reflection Removal
- Authors: Hao Zhao, Mingjia Li, Qiming Hu, Xiaojie Guo,
- Abstract summary: High-level semantic clues tend to be compressed or discarded during layer-by-layer propagation.
We propose a novel architecture called Reversible Decoupling Network (RDNet)
RDNet employs a reversible encoder to secure valuable information while flexibly decoupling transmission- and reflection-relevant features during the forward pass.
- Score: 15.763420129991255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent deep-learning-based approaches to single-image reflection removal have shown promising advances, primarily for two reasons: 1) the utilization of recognition-pretrained features as inputs, and 2) the design of dual-stream interaction networks. However, according to the Information Bottleneck principle, high-level semantic clues tend to be compressed or discarded during layer-by-layer propagation. Additionally, interactions in dual-stream networks follow a fixed pattern across different layers, limiting overall performance. To address these limitations, we propose a novel architecture called Reversible Decoupling Network (RDNet), which employs a reversible encoder to secure valuable information while flexibly decoupling transmission- and reflection-relevant features during the forward pass. Furthermore, we customize a transmission-rate-aware prompt generator to dynamically calibrate features, further boosting performance. Extensive experiments demonstrate the superiority of RDNet over existing SOTA methods on five widely-adopted benchmark datasets. Our code will be made publicly available.
Related papers
- TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Dual-stream contrastive predictive network with joint handcrafted
feature view for SAR ship classification [9.251342335645765]
We propose a novel dual-stream contrastive predictive network (DCPNet)
The first task is to construct positive sample pairs, guiding the core encoder to learn more general representations.
The second task is to encourage adaptive capture of the correspondence between deep features and handcrated features, achieving knowledge transfer within the model, and effectively improving the redundancy caused by the feature fusion.
arXiv Detail & Related papers (2023-11-26T05:47:01Z) - Feature Decoupling-Recycling Network for Fast Interactive Segmentation [79.22497777645806]
Recent interactive segmentation methods iteratively take source image, user guidance and previously predicted mask as the input.
We propose the Feature Decoupling-Recycling Network (FDRN), which decouples the modeling components based on their intrinsic discrepancies.
arXiv Detail & Related papers (2023-08-07T12:26:34Z) - Boundary-semantic collaborative guidance network with dual-stream
feedback mechanism for salient object detection in optical remote sensing
imagery [22.21644705244091]
We propose boundary-semantic collaborative guidance network (BSCGNet) with dual-stream feedback mechanism.
BSCGNet exhibits distinct advantages in challenging scenarios and outperforms the 17 state-of-the-art (SOTA) approaches proposed in recent years.
arXiv Detail & Related papers (2023-03-06T03:36:06Z) - m-RevNet: Deep Reversible Neural Networks with Momentum [25.609808975649624]
We propose a reversible neural network, termed as m-RevNet, that is characterized by inserting momentum update to residual blocks.
For certain learning scenarios, we analytically and empirically reveal that our m-RevNet succeeds while standard ResNet fails.
arXiv Detail & Related papers (2021-08-12T17:14:32Z) - Deep Learning-based Implicit CSI Feedback in Massive MIMO [68.81204537021821]
We propose a DL-based implicit feedback architecture to inherit the low-overhead characteristic, which uses neural networks (NNs) to replace the precoding matrix indicator (PMI) encoding and decoding modules.
For a single resource block (RB), the proposed architecture can save 25.0% and 40.0% of overhead compared with Type I codebook under two antenna configurations.
arXiv Detail & Related papers (2021-05-21T02:43:02Z) - Binarized Aggregated Network with Quantization: Flexible Deep Learning
Deployment for CSI Feedback in Massive MIMO System [22.068682756598914]
A novel network named aggregated channel reconstruction network (ACRNet) is designed to boost the feedback performance.
The elastic feedback scheme is proposed to flexibly adapt the network to meet different resource limitations.
Experiments show that the proposed ACRNet outperforms loads of previous state-of-the-art networks.
arXiv Detail & Related papers (2021-05-01T22:50:25Z) - CondenseNet V2: Sparse Feature Reactivation for Deep Networks [87.38447745642479]
Reusing features in deep networks through dense connectivity is an effective way to achieve high computational efficiency.
We propose an alternative approach named sparse feature reactivation (SFR), aiming at actively increasing the utility of features for reusing.
Our experiments show that the proposed models achieve promising performance on image classification (ImageNet and CIFAR) and object detection (MS COCO) in terms of both theoretical efficiency and practical speed.
arXiv Detail & Related papers (2021-04-09T14:12:43Z) - Dual-constrained Deep Semi-Supervised Coupled Factorization Network with
Enriched Prior [80.5637175255349]
We propose a new enriched prior based Dual-constrained Deep Semi-Supervised Coupled Factorization Network, called DS2CF-Net.
To ex-tract hidden deep features, DS2CF-Net is modeled as a deep-structure and geometrical structure-constrained neural network.
Our network can obtain state-of-the-art performance for representation learning and clustering.
arXiv Detail & Related papers (2020-09-08T13:10:21Z) - Suppress and Balance: A Simple Gated Network for Salient Object
Detection [89.88222217065858]
We propose a simple gated network (GateNet) to solve both issues at once.
With the help of multilevel gate units, the valuable context information from the encoder can be optimally transmitted to the decoder.
In addition, we adopt the atrous spatial pyramid pooling based on the proposed "Fold" operation (Fold-ASPP) to accurately localize salient objects of various scales.
arXiv Detail & Related papers (2020-07-16T02:00:53Z) - Lifted Regression/Reconstruction Networks [17.89437720094451]
We propose lifted regression/reconstruction networks (LRRNs)
LRRNs combine lifted neural networks with a guaranteed Lipschitz continuity property for the output layer.
We analyse and numerically demonstrate applications for unsupervised and supervised learning.
arXiv Detail & Related papers (2020-05-07T13:24:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.