論文の概要: Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous
Graphs
- arxiv url: http://arxiv.org/abs/2007.08294v5
- Date: Mon, 8 Feb 2021 04:19:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 22:12:59.978457
- Title: Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous
Graphs
- Title(参考訳): 不均一グラフのためのメタパスを用いた自己教師付き補助学習
- Authors: Dasol Hwang, Jinyoung Park, Sunyoung Kwon, Kyung-Min Kim, Jung-Woo Ha,
Hyunwoo J. Kim
- Abstract要約: ヘテロジニアスグラフ上のグラフニューラルネットワークを学習するための,新しい自己教師付き補助学習法を提案する。
本手法は,任意のグラフニューラルネットワークに対して,手動ラベリングや追加データなしでプラグイン方式で適用することができる。
- 参考スコア(独自算出の注目度): 21.617020380894488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks have shown superior performance in a wide range of
applications providing a powerful representation of graph-structured data.
Recent works show that the representation can be further improved by auxiliary
tasks. However, the auxiliary tasks for heterogeneous graphs, which contain
rich semantic information with various types of nodes and edges, have less
explored in the literature. In this paper, to learn graph neural networks on
heterogeneous graphs we propose a novel self-supervised auxiliary learning
method using meta-paths, which are composite relations of multiple edge types.
Our proposed method is learning to learn a primary task by predicting
meta-paths as auxiliary tasks. This can be viewed as a type of meta-learning.
The proposed method can identify an effective combination of auxiliary tasks
and automatically balance them to improve the primary task. Our methods can be
applied to any graph neural networks in a plug-in manner without manual
labeling or additional data. The experiments demonstrate that the proposed
method consistently improves the performance of link prediction and node
classification on heterogeneous graphs.
- Abstract(参考訳): グラフニューラルネットワークは、グラフ構造化データの強力な表現を提供する幅広いアプリケーションにおいて、優れたパフォーマンスを示している。
近年の研究では,補助作業によって表現をさらに改善できることが示されている。
しかし、様々な種類のノードとエッジを持つ豊富な意味情報を含む異種グラフの補助タスクは、文献ではあまり研究されていない。
本稿では,ヘテロジニアスグラフ上でグラフニューラルネットワークを学習するために,複数のエッジタイプの複合関係であるメタパスを用いた自己教師付き補助学習手法を提案する。
提案手法は,メタパスを補助タスクとして予測することで,プライマリタスクを学習することである。
これはメタラーニングの一種と見なすことができる。
提案手法は,補助タスクの効果的な組み合わせを識別し,それらを自動的にバランスさせ,一次タスクを改善する。
本手法は,任意のグラフニューラルネットワークに対して,手動ラベリングや追加データなしでプラグイン方式で適用することができる。
提案手法は,不均質グラフにおけるリンク予測とノード分類の性能を一貫して向上させることを示す。
関連論文リスト
- State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Self-supervised Learning for Heterogeneous Graph via Structure
Information based on Metapath [9.757299837675204]
自己教師付き表現学習はこの問題に対処するための潜在的アプローチである。
本稿では,メタパスに基づく構造情報を用いたヘテロジニアスグラフの教師付き学習手法を提案する。
ジャンプ数を予測するために、SESIMはデータ自体を使用してラベルを生成する。
論文 参考訳(メタデータ) (2022-09-09T10:06:18Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
グラフニューラルネットワーク(GNN)は、グラフ表現学習に有効なツールである。
本稿では,グラフニューラルネットワークモデルの選択に非依存な GraphRETRIEVAL という検索強化方式を提案する。
我々は13のデータセットに対して包括的な実験を行い、GRAPHRETRIEVALが既存のGNNよりも大幅に改善されていることを観察した。
論文 参考訳(メタデータ) (2022-06-01T09:59:09Z) - A Comprehensive Analytical Survey on Unsupervised and Semi-Supervised
Graph Representation Learning Methods [4.486285347896372]
本調査は,グラフ埋め込み手法のすべての主要なクラスを評価することを目的としている。
我々は,手動の特徴工学,行列分解,浅部ニューラルネットワーク,深部グラフ畳み込みネットワークなどの手法を含む分類学を用いてグラフ埋め込み手法を編成した。
我々はPyTorch GeometricおよびDGLライブラリ上で実験を設計し、異なるマルチコアCPUおよびGPUプラットフォーム上で実験を行った。
論文 参考訳(メタデータ) (2021-12-20T07:50:26Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Self-supervised Auxiliary Learning for Graph Neural Networks via
Meta-Learning [16.847149163314462]
グラフニューラルネットワークを効果的に学習するための,新しい自己監視型補助学習フレームワークを提案する。
本手法では,様々な補助タスクを用いて一次タスクを学習し,一般化性能を向上させる。
本手法は,任意のグラフニューラルネットワークに対して,手動ラベリングや追加データなしでプラグイン方式で適用することができる。
論文 参考訳(メタデータ) (2021-03-01T05:52:57Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Active Learning on Attributed Graphs via Graph Cognizant Logistic
Regression and Preemptive Query Generation [37.742218733235084]
本稿では,属性グラフにおけるノード分類処理のための新しいグラフベース能動学習アルゴリズムを提案する。
提案アルゴリズムは,線形化グラフ畳み込みニューラルネットワーク(GCN)と等価なグラフ認識ロジスティック回帰を用いて,予測フェーズの誤差低減を最大化する。
5つの公開ベンチマークデータセットで実験を行い、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-07-09T18:00:53Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。