Deep Learning in Protein Structural Modeling and Design
- URL: http://arxiv.org/abs/2007.08383v1
- Date: Thu, 16 Jul 2020 14:59:38 GMT
- Title: Deep Learning in Protein Structural Modeling and Design
- Authors: Wenhao Gao, Sai Pooja Mahajan, Jeremias Sulam, and Jeffrey J. Gray
- Abstract summary: Deep learning is catalyzing a scientific revolution fueled by big data, accessible toolkits, and powerful computational resources.
Protein structural modeling is critical to understand and engineer biological systems at the molecular level.
This review is directed to help both computational biologists to gain familiarity with the deep learning methods applied in protein modeling, and computer scientists to gain perspective on the biologically meaningful problems that may benefit from deep learning techniques.
- Score: 6.282267356230666
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Deep learning is catalyzing a scientific revolution fueled by big data,
accessible toolkits, and powerful computational resources, impacting many
fields including protein structural modeling. Protein structural modeling, such
as predicting structure from amino acid sequence and evolutionary information,
designing proteins toward desirable functionality, or predicting properties or
behavior of a protein, is critical to understand and engineer biological
systems at the molecular level. In this review, we summarize the recent
advances in applying deep learning techniques to tackle problems in protein
structural modeling and design. We dissect the emerging approaches using deep
learning techniques for protein structural modeling, and discuss advances and
challenges that must be addressed. We argue for the central importance of
structure, following the "sequence -> structure -> function" paradigm. This
review is directed to help both computational biologists to gain familiarity
with the deep learning methods applied in protein modeling, and computer
scientists to gain perspective on the biologically meaningful problems that may
benefit from deep learning techniques.
Related papers
- CPE-Pro: A Structure-Sensitive Deep Learning Method for Protein Representation and Origin Evaluation [7.161099050722313]
We develop a structure-sensitive supervised deep learning model, Crystal vs Predicted Evaluator for Protein Structure (CPE-Pro)
CPE-Pro learns the structural information of proteins and captures inter-structural differences to achieve accurate traceability on four data classes.
We utilize Foldseek to encode protein structures into "structure-sequences" and trained a protein Structural Sequence Language Model, SSLM.
arXiv Detail & Related papers (2024-10-21T02:21:56Z) - Growing ecosystem of deep learning methods for modeling
protein$\unicode{x2013}$protein interactions [0.0]
We discuss the growing ecosystem of deep learning methods for modeling protein interactions.
Opportunities abound to discover novel interactions, modulate their physical mechanisms, and engineer binders to unravel their functions.
arXiv Detail & Related papers (2023-10-10T15:53:27Z) - Structure-informed Language Models Are Protein Designers [69.70134899296912]
We present LM-Design, a generic approach to reprogramming sequence-based protein language models (pLMs)
We conduct a structural surgery on pLMs, where a lightweight structural adapter is implanted into pLMs and endows it with structural awareness.
Experiments show that our approach outperforms the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2023-02-03T10:49:52Z) - Integration of Pre-trained Protein Language Models into Geometric Deep
Learning Networks [68.90692290665648]
We integrate knowledge learned by protein language models into several state-of-the-art geometric networks.
Our findings show an overall improvement of 20% over baselines.
Strong evidence indicates that the incorporation of protein language models' knowledge enhances geometric networks' capacity by a significant margin.
arXiv Detail & Related papers (2022-12-07T04:04:04Z) - Deep Learning Methods for Protein Family Classification on PDB
Sequencing Data [0.0]
We demonstrate and compare the performance of several deep learning frameworks, including novel bi-directional LSTM and convolutional models, on widely available sequencing data.
Our results show that our deep learning models deliver superior performance to classical machine learning methods, with the convolutional architecture providing the most impressive inference performance.
arXiv Detail & Related papers (2022-07-14T06:11:32Z) - Contrastive Representation Learning for 3D Protein Structures [13.581113136149469]
We introduce a new representation learning framework for 3D protein structures.
Our framework uses unsupervised contrastive learning to learn meaningful representations of protein structures.
We show, how these representations can be used to solve a large variety of tasks, such as protein function prediction, protein fold classification, structural similarity prediction, and protein-ligand binding affinity prediction.
arXiv Detail & Related papers (2022-05-31T10:33:06Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
This work focuses on learning a generative neural network on a structural ensemble of a drug-target protein.
Model tasks involve characterizing the distinct structural fluctuations of the protein bound to various drug molecules.
Results show that our geometric learning-based method enjoys both accuracy and efficiency for generating complex structural variations.
arXiv Detail & Related papers (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
We propose a novel structure-aware protein self-supervised learning method to capture structural information of proteins.
In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information.
We identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme.
arXiv Detail & Related papers (2022-04-06T02:18:41Z) - Transfer Learning for Protein Structure Classification at Low Resolution [124.5573289131546]
We show that it is possible to make accurate ($geq$80%) predictions of protein class and architecture from structures determined at low ($leq$3A) resolution.
We provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function.
arXiv Detail & Related papers (2020-08-11T15:01:32Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
We demonstrate methods for analyzing protein Transformer models through the lens of attention.
We show that attention captures the folding structure of proteins, connecting amino acids that are far apart in the underlying sequence, but spatially close in the three-dimensional structure.
We also present a three-dimensional visualization of the interaction between attention and protein structure.
arXiv Detail & Related papers (2020-06-26T21:50:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.