Advanced Deep Learning Methods for Protein Structure Prediction and Design
- URL: http://arxiv.org/abs/2503.13522v3
- Date: Sat, 29 Mar 2025 13:08:27 GMT
- Title: Advanced Deep Learning Methods for Protein Structure Prediction and Design
- Authors: Yichao Zhang, Ningyuan Deng, Xinyuan Song, Ziqian Bi, Tianyang Wang, Zheyu Yao, Keyu Chen, Ming Li, Qian Niu, Junyu Liu, Benji Peng, Sen Zhang, Ming Liu, Li Zhang, Xuanhe Pan, Jinlang Wang, Pohsun Feng, Yizhu Wen, Lawrence KQ Yan, Hongming Tseng, Yan Zhong, Yunze Wang, Ziyuan Qin, Bowen Jing, Junjie Yang, Jun Zhou, Chia Xin Liang, Junhao Song,
- Abstract summary: We comprehensively explore advanced deep learning methods applied to protein structure prediction and design.<n>The text analyses key components including structure generation, evaluation metrics, multiple sequence alignment processing, and network architecture.<n> Strategies for enhancing prediction accuracy and integrating deep learning techniques with experimental validation are thoroughly explored.
- Score: 28.575821996185024
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: After AlphaFold won the Nobel Prize, protein prediction with deep learning once again became a hot topic. We comprehensively explore advanced deep learning methods applied to protein structure prediction and design. It begins by examining recent innovations in prediction architectures, with detailed discussions on improvements such as diffusion based frameworks and novel pairwise attention modules. The text analyses key components including structure generation, evaluation metrics, multiple sequence alignment processing, and network architecture, thereby illustrating the current state of the art in computational protein modelling. Subsequent chapters focus on practical applications, presenting case studies that range from individual protein predictions to complex biomolecular interactions. Strategies for enhancing prediction accuracy and integrating deep learning techniques with experimental validation are thoroughly explored. The later sections review the industry landscape of protein design, highlighting the transformative role of artificial intelligence in biotechnology and discussing emerging market trends and future challenges. Supplementary appendices provide essential resources such as databases and open source tools, making this volume a valuable reference for researchers and students.
Related papers
- Advances in Protein Representation Learning: Methods, Applications, and Future Directions [1.7034813545878589]
Proteins are complex biomolecules that play a central role in various biological processes.
Protein Representation Learning (PRL) has emerged as a transformative approach, enabling the extraction of meaningful computational representations from protein data.
arXiv Detail & Related papers (2025-03-20T19:16:54Z) - Computational Protein Science in the Era of Large Language Models (LLMs) [54.35488233989787]
Computational protein science is dedicated to revealing knowledge and developing applications within the protein sequence-structure-function paradigm.
Recently, Language Models (pLMs) have emerged as a milestone in AI due to their unprecedented language processing & generalization capability.
arXiv Detail & Related papers (2025-01-17T16:21:18Z) - A Survey of Deep Learning Methods in Protein Bioinformatics and its Impact on Protein Design [3.5897534810405403]
Deep learning has demonstrated remarkable performance in fields such as computer vision and natural language processing.<n>It has been increasingly applied in recent years to the data-rich domain of protein sequences with great success.<n>The performance improvements achieved by deep learning unlocks new possibilities in the field of protein bioinformatics.
arXiv Detail & Related papers (2025-01-02T05:21:34Z) - Recent advances in interpretable machine learning using structure-based protein representations [30.907048279915312]
Recent advancements in machine learning (ML) are transforming the field of structural biology.
We present various methods for representing protein 3D structures from low to high-resolution.
We show how interpretable ML methods can support tasks such as predicting protein structures, protein function, and protein-protein interactions.
arXiv Detail & Related papers (2024-09-26T10:56:27Z) - ProteinBench: A Holistic Evaluation of Protein Foundation Models [53.59325047872512]
We introduce ProteinBench, a holistic evaluation framework for protein foundation models.
Our approach consists of three key components: (i) A taxonomic classification of tasks that broadly encompass the main challenges in the protein domain, based on the relationships between different protein modalities; (ii) A multi-metric evaluation approach that assesses performance across four key dimensions: quality, novelty, diversity, and robustness; and (iii) In-depth analyses from various user objectives, providing a holistic view of model performance.
arXiv Detail & Related papers (2024-09-10T06:52:33Z) - Progressive Multi-Modality Learning for Inverse Protein Folding [47.095862120116976]
We propose a novel protein design paradigm called MMDesign, which leverages multi-modality transfer learning.
MMDesign is the first framework that combines a pretrained structural module with a pretrained contextual module, using an auto-encoder (AE) based language model to incorporate prior protein semantic knowledge.
Experimental results, only training with the small dataset, demonstrate that MMDesign consistently outperforms baselines on various public benchmarks.
arXiv Detail & Related papers (2023-12-11T10:59:23Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
Structure-based drug design (SBDD) leverages the three-dimensional geometry of proteins to identify potential drug candidates.
Recent advancements in geometric deep learning, which effectively integrate and process 3D geometric data, have significantly propelled the field forward.
arXiv Detail & Related papers (2023-06-20T14:21:58Z) - Integration of Pre-trained Protein Language Models into Geometric Deep
Learning Networks [68.90692290665648]
We integrate knowledge learned by protein language models into several state-of-the-art geometric networks.
Our findings show an overall improvement of 20% over baselines.
Strong evidence indicates that the incorporation of protein language models' knowledge enhances geometric networks' capacity by a significant margin.
arXiv Detail & Related papers (2022-12-07T04:04:04Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
We propose a novel structure-aware protein self-supervised learning method to capture structural information of proteins.
In particular, a well-designed graph neural network (GNN) model is pretrained to preserve the protein structural information.
We identify the relation between the sequential information in the protein language model and the structural information in the specially designed GNN model via a novel pseudo bi-level optimization scheme.
arXiv Detail & Related papers (2022-04-06T02:18:41Z) - Deep Learning in Protein Structural Modeling and Design [6.282267356230666]
Deep learning is catalyzing a scientific revolution fueled by big data, accessible toolkits, and powerful computational resources.
Protein structural modeling is critical to understand and engineer biological systems at the molecular level.
This review is directed to help both computational biologists to gain familiarity with the deep learning methods applied in protein modeling, and computer scientists to gain perspective on the biologically meaningful problems that may benefit from deep learning techniques.
arXiv Detail & Related papers (2020-07-16T14:59:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.