SIENet: Spatial Information Enhancement Network for 3D Object Detection
from Point Cloud
- URL: http://arxiv.org/abs/2103.15396v2
- Date: Thu, 1 Apr 2021 02:16:52 GMT
- Title: SIENet: Spatial Information Enhancement Network for 3D Object Detection
from Point Cloud
- Authors: Ziyu Li, Yuncong Yao, Zhibin Quan, Wankou Yang, Jin Xie
- Abstract summary: LiDAR-based 3D object detection pushes forward an immense influence on autonomous vehicles.
Due to the limitation of the intrinsic properties of LiDAR, fewer points are collected at the objects farther away from the sensor.
To address the challenge, we propose a novel two-stage 3D object detection framework, named SIENet.
- Score: 20.84329063509459
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR-based 3D object detection pushes forward an immense influence on
autonomous vehicles. Due to the limitation of the intrinsic properties of
LiDAR, fewer points are collected at the objects farther away from the sensor.
This imbalanced density of point clouds degrades the detection accuracy but is
generally neglected by previous works. To address the challenge, we propose a
novel two-stage 3D object detection framework, named SIENet. Specifically, we
design the Spatial Information Enhancement (SIE) module to predict the spatial
shapes of the foreground points within proposals, and extract the structure
information to learn the representative features for further box refinement.
The predicted spatial shapes are complete and dense point sets, thus the
extracted structure information contains more semantic representation. Besides,
we design the Hybrid-Paradigm Region Proposal Network (HP-RPN) which includes
multiple branches to learn discriminate features and generate accurate
proposals for the SIE module. Extensive experiments on the KITTI 3D object
detection benchmark show that our elaborately designed SIENet outperforms the
state-of-the-art methods by a large margin.
Related papers
- PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds [29.15589024703907]
In this paper, we revisit the local point aggregators from the perspective of allocating computational resources.
We find that the simplest pillar based models perform surprisingly well considering both accuracy and latency.
Our results challenge the common intuition that the detailed geometry modeling is essential to achieve high performance for 3D object detection.
arXiv Detail & Related papers (2023-05-08T17:59:14Z) - PSA-Det3D: Pillar Set Abstraction for 3D object Detection [14.788139868324155]
We propose a pillar set abstraction (PSA) and foreground point compensation (FPC) to improve the detection performance for small object.
The experiments on the KITTI 3D detection benchmark show that our proposed PSA-Det3D outperforms other algorithms with high accuracy for small object detection.
arXiv Detail & Related papers (2022-10-20T03:05:34Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - RBGNet: Ray-based Grouping for 3D Object Detection [104.98776095895641]
We propose the RBGNet framework, a voting-based 3D detector for accurate 3D object detection from point clouds.
We propose a ray-based feature grouping module, which aggregates the point-wise features on object surfaces using a group of determined rays.
Our model achieves state-of-the-art 3D detection performance on ScanNet V2 and SUN RGB-D with remarkable performance gains.
arXiv Detail & Related papers (2022-04-05T14:42:57Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - InfoFocus: 3D Object Detection for Autonomous Driving with Dynamic
Information Modeling [65.47126868838836]
We propose a novel 3D object detection framework with dynamic information modeling.
Coarse predictions are generated in the first stage via a voxel-based region proposal network.
Experiments are conducted on the large-scale nuScenes 3D detection benchmark.
arXiv Detail & Related papers (2020-07-16T18:27:08Z) - Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection [40.34710686994996]
3D object detection has become an emerging task in autonomous driving scenarios.
Previous works process 3D point clouds using either projection-based or voxel-based models.
We propose the Stereo RGB and Deeper LIDAR framework which can utilize semantic and spatial information simultaneously.
arXiv Detail & Related papers (2020-06-09T11:19:24Z) - Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud
Object Detection [64.2159881697615]
Object detection from 3D point clouds remains a challenging task, though recent studies pushed the envelope with the deep learning techniques.
We propose a domain adaptation like approach to enhance the robustness of the feature representation.
Our simple yet effective approach fundamentally boosts the performance of 3D point cloud object detection and achieves the state-of-the-art results.
arXiv Detail & Related papers (2020-06-08T05:15:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.