Dementia Prediction Applying Variational Quantum Classifier
- URL: http://arxiv.org/abs/2007.08653v1
- Date: Tue, 14 Jul 2020 22:47:12 GMT
- Title: Dementia Prediction Applying Variational Quantum Classifier
- Authors: Daniel Sierra-Sosa, Juan Arcila-Moreno, Begonya Garcia-Zapirain,
Cristian Castillo-Olea, Adel Elmaghraby
- Abstract summary: Dementia is the fifth cause of death worldwide with 10 million new cases every year.
Recent research in Quantum Machine Learning (QML) techniques have found different approaches that may be useful to accelerate the training process of existing machine learning models.
This work aims to report a real-world application of a Quantum Machine Learning Algorithm, in particular, we found that using the implemented version for Variational Quantum Classiffication (VQC) in IBM's framework Qiskit allows predicting dementia in elderly patients.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dementia is the fifth cause of death worldwide with 10 million new cases
every year. Healthcare applications using machine learning techniques have
almost reached the physical limits while more data is becoming available
resulting from the increasing rate of diagnosis. Recent research in Quantum
Machine Learning (QML) techniques have found different approaches that may be
useful to accelerate the training process of existing machine learning models
and provide an alternative to learn more complex patterns. This work aims to
report a real-world application of a Quantum Machine Learning Algorithm, in
particular, we found that using the implemented version for Variational Quantum
Classiffication (VQC) in IBM's framework Qiskit allows predicting dementia in
elderly patients, this approach proves to provide more consistent results when
compared with a classical Support Vector Machine (SVM) with a linear kernel
using different number of features.
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Machine Learning and Quantum Intelligence for Health Data Scenarios [0.0]
Traditional machine learning algorithms often face challenges in high-dimensional or limited-quality datasets.
Quantum Machine Learning leverages quantum properties, such as superposition and entanglement, to enhance pattern recognition and classification.
This paper explores QML's application in healthcare, focusing on quantum kernel methods and hybrid quantum-classical networks for heart disease prediction and COVID-19 detection.
arXiv Detail & Related papers (2024-10-28T01:04:43Z) - Early Detection of Coronary Heart Disease Using Hybrid Quantum Machine Learning Approach [0.0]
Coronary heart disease (CHD) is a severe cardiac disease, and its early diagnosis is essential.
The prevailing development of quantum computing and machine learning (ML) technologies may bring practical improvement to the performance of CHD diagnosis.
A quantum leap in the healthcare industry will increase processing power and optimise multiple models.
arXiv Detail & Related papers (2024-09-17T07:08:39Z) - Quantum Machine Learning with Application to Progressive Supranuclear Palsy Network Classification [0.0]
We present a quantum machine learning model for the diagnosis of Progressive Supranuclear Palsy (PSP) disorder.
The results suggest that quantum machine learning has led to noticeable advancement and outperforms classical frameworks.
In particular, we have demonstrated the successful application of the present model on both a quantum simulator and real chips of the IBM quantum platform.
arXiv Detail & Related papers (2024-07-06T14:16:31Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
We introduce the Quantum-Train(QT) framework, a novel approach that integrates quantum computing with machine learning algorithms.
QT achieves remarkable results by employing a quantum neural network alongside a classical mapping model.
arXiv Detail & Related papers (2024-05-18T14:35:57Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Improving Convergence for Quantum Variational Classifiers using Weight
Re-Mapping [60.086820254217336]
In recent years, quantum machine learning has seen a substantial increase in the use of variational quantum circuits (VQCs)
We introduce weight re-mapping for VQCs, to unambiguously map the weights to an interval of length $2pi$.
We demonstrate that weight re-mapping increased test accuracy for the Wine dataset by $10%$ over using unmodified weights.
arXiv Detail & Related papers (2022-12-22T13:23:19Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Nearest Centroid Classification on a Trapped Ion Quantum Computer [57.5195654107363]
We design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations.
We experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, matching the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional synthetic data.
arXiv Detail & Related papers (2020-12-08T01:10:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.