Early Detection of Coronary Heart Disease Using Hybrid Quantum Machine Learning Approach
- URL: http://arxiv.org/abs/2409.10932v2
- Date: Tue, 1 Oct 2024 15:21:05 GMT
- Title: Early Detection of Coronary Heart Disease Using Hybrid Quantum Machine Learning Approach
- Authors: Mehroush Banday, Sherin Zafar, Parul Agarwal, M Afshar Alam, Abubeker K M,
- Abstract summary: Coronary heart disease (CHD) is a severe cardiac disease, and its early diagnosis is essential.
The prevailing development of quantum computing and machine learning (ML) technologies may bring practical improvement to the performance of CHD diagnosis.
A quantum leap in the healthcare industry will increase processing power and optimise multiple models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coronary heart disease (CHD) is a severe cardiac disease, and hence, its early diagnosis is essential as it improves treatment results and saves money on medical care. The prevailing development of quantum computing and machine learning (ML) technologies may bring practical improvement to the performance of CHD diagnosis. Quantum machine learning (QML) is receiving tremendous interest in various disciplines due to its higher performance and capabilities. A quantum leap in the healthcare industry will increase processing power and optimise multiple models. Techniques for QML have the potential to forecast cardiac disease and help in early detection. To predict the risk of coronary heart disease, a hybrid approach utilizing an ensemble machine learning model based on QML classifiers is presented in this paper. Our approach, with its unique ability to address multidimensional healthcare data, reassures the method's robustness by fusing quantum and classical ML algorithms in a multi-step inferential framework. The marked rise in heart disease and death rates impacts worldwide human health and the global economy. Reducing cardiac morbidity and mortality requires early detection of heart disease. In this research, a hybrid approach utilizes techniques with quantum computing capabilities to tackle complex problems that are not amenable to conventional machine learning algorithms and to minimize computational expenses. The proposed method has been developed in the Raspberry Pi 5 Graphics Processing Unit (GPU) platform and tested on a broad dataset that integrates clinical and imaging data from patients suffering from CHD and healthy controls. Compared to classical machine learning models, the accuracy, sensitivity, F1 score, and specificity of the proposed hybrid QML model used with CHD are manifold higher.
Related papers
- Machine Learning and Quantum Intelligence for Health Data Scenarios [0.0]
Traditional machine learning algorithms often face challenges in high-dimensional or limited-quality datasets.
Quantum Machine Learning leverages quantum properties, such as superposition and entanglement, to enhance pattern recognition and classification.
This paper explores QML's application in healthcare, focusing on quantum kernel methods and hybrid quantum-classical networks for heart disease prediction and COVID-19 detection.
arXiv Detail & Related papers (2024-10-28T01:04:43Z) - KACQ-DCNN: Uncertainty-Aware Interpretable Kolmogorov-Arnold Classical-Quantum Dual-Channel Neural Network for Heart Disease Detection [1.927711700724334]
Heart failure is a major global health challenge, contributing significantly to the 17.8 million annual deaths from cardiovascular disease.
Current heart disease prediction models based on classical machine learning face limitations.
We introduce KACQ-DCNN, a novel classical-quantum hybrid dual-channel neural network.
arXiv Detail & Related papers (2024-10-09T21:26:49Z) - The Significance of Machine Learning in Clinical Disease Diagnosis: A
Review [0.0]
This research investigates the capacity of machine learning algorithms to improve the transmission of heart rate data in time series healthcare metrics.
The factors under consideration include the algorithm utilized, the types of diseases targeted, the data types employed, the applications, and the evaluation metrics.
arXiv Detail & Related papers (2023-10-25T20:28:22Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for
Lightweight Skin Lesion Classification Using Dermoscopic Images [62.60956024215873]
Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide.
Most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices.
This study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification.
arXiv Detail & Related papers (2022-03-22T06:54:29Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Efficient Learning and Decoding of the Continuous-Time Hidden Markov
Model for Disease Progression Modeling [119.50438407358862]
We present the first complete characterization of efficient EM-based learning methods for CT-HMM models.
We show that EM-based learning consists of two challenges: the estimation of posterior state probabilities and the computation of end-state conditioned statistics.
We demonstrate the use of CT-HMMs with more than 100 states to visualize and predict disease progression using a glaucoma dataset and an Alzheimer's disease dataset.
arXiv Detail & Related papers (2021-10-26T20:06:05Z) - Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm [0.0]
Heart failure is one of the major health hazard issues of our time and is a leading cause of death worldwide.
Data mining is the process of converting massive volumes of raw data created by the healthcare institutions into meaningful information.
Our study shows that only certain attributes collected from the patients are imperative to successfully predict the surviving possibility post heart failure.
arXiv Detail & Related papers (2021-08-30T16:42:27Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Dementia Prediction Applying Variational Quantum Classifier [0.0]
Dementia is the fifth cause of death worldwide with 10 million new cases every year.
Recent research in Quantum Machine Learning (QML) techniques have found different approaches that may be useful to accelerate the training process of existing machine learning models.
This work aims to report a real-world application of a Quantum Machine Learning Algorithm, in particular, we found that using the implemented version for Variational Quantum Classiffication (VQC) in IBM's framework Qiskit allows predicting dementia in elderly patients.
arXiv Detail & Related papers (2020-07-14T22:47:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.