End-to-end Deep Prototype and Exemplar Models for Predicting Human
Behavior
- URL: http://arxiv.org/abs/2007.08723v1
- Date: Fri, 17 Jul 2020 02:32:17 GMT
- Title: End-to-end Deep Prototype and Exemplar Models for Predicting Human
Behavior
- Authors: Pulkit Singh, Joshua C. Peterson, Ruairidh M. Battleday, Thomas L.
Griffiths
- Abstract summary: We extend classic prototype and exemplar models to learn both stimulus and category representations jointly from raw input.
This new class of models can be parameterized by deep neural networks (DNN) and trained end-to-end.
Compared to typical DNNs, we find that their cognitively inspired counterparts both provide better intrinsic fit to human behavior and improve ground-truth classification.
- Score: 10.361297404586033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traditional models of category learning in psychology focus on representation
at the category level as opposed to the stimulus level, even though the two are
likely to interact. The stimulus representations employed in such models are
either hand-designed by the experimenter, inferred circuitously from human
judgments, or borrowed from pretrained deep neural networks that are themselves
competing models of category learning. In this work, we extend classic
prototype and exemplar models to learn both stimulus and category
representations jointly from raw input. This new class of models can be
parameterized by deep neural networks (DNN) and trained end-to-end. Following
their namesakes, we refer to them as Deep Prototype Models, Deep Exemplar
Models, and Deep Gaussian Mixture Models. Compared to typical DNNs, we find
that their cognitively inspired counterparts both provide better intrinsic fit
to human behavior and improve ground-truth classification.
Related papers
- Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
In recent years, the robot learning community has shown increasing interest in using deep generative models to capture the complexity of large datasets.
We present the different types of models that the community has explored, such as energy-based models, diffusion models, action value maps, or generative adversarial networks.
We also present the different types of applications in which deep generative models have been used, from grasp generation to trajectory generation or cost learning.
arXiv Detail & Related papers (2024-08-08T11:34:31Z) - MENTOR: Human Perception-Guided Pretraining for Increased Generalization [5.596752018167751]
We introduce MENTOR (huMan pErceptioN-guided preTraining fOr increased geneRalization)
We train an autoencoder to learn human saliency maps given an input image, without class labels.
We remove the decoder part, add a classification layer on top of the encoder, and fine-tune this new model conventionally.
arXiv Detail & Related papers (2023-10-30T13:50:44Z) - Evaluating alignment between humans and neural network representations in image-based learning tasks [5.657101730705275]
We tested how well the representations of $86$ pretrained neural network models mapped to human learning trajectories.
We found that while training dataset size was a core determinant of alignment with human choices, contrastive training with multi-modal data (text and imagery) was a common feature of currently publicly available models that predicted human generalisation.
In conclusion, pretrained neural networks can serve to extract representations for cognitive models, as they appear to capture some fundamental aspects of cognition that are transferable across tasks.
arXiv Detail & Related papers (2023-06-15T08:18:29Z) - Distinguishing representational geometries with controversial stimuli:
Bayesian experimental design and its application to face dissimilarity
judgments [0.5735035463793008]
We show that a neural network trained to invert a 3D-face-model graphics is more human-aligned than the same architecture trained on identification, classification, or autoencoding.
Our results indicate that a neural network trained to invert a 3D-face-model graphics is more human-aligned than the same architecture trained on identification, classification, or autoencoding.
arXiv Detail & Related papers (2022-11-28T04:17:35Z) - Reconciliation of Pre-trained Models and Prototypical Neural Networks in
Few-shot Named Entity Recognition [35.34238362639678]
We propose a one-line-code normalization method to reconcile such a mismatch with empirical and theoretical grounds.
Our work also provides an analytical viewpoint for addressing the general problems in few-shot name entity recognition.
arXiv Detail & Related papers (2022-11-07T02:33:45Z) - Are Neural Topic Models Broken? [81.15470302729638]
We study the relationship between automated and human evaluation of topic models.
We find that neural topic models fare worse in both respects compared to an established classical method.
arXiv Detail & Related papers (2022-10-28T14:38:50Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Is Automated Topic Model Evaluation Broken?: The Incoherence of
Coherence [62.826466543958624]
We look at the standardization gap and the validation gap in topic model evaluation.
Recent models relying on neural components surpass classical topic models according to these metrics.
We use automatic coherence along with the two most widely accepted human judgment tasks, namely, topic rating and word intrusion.
arXiv Detail & Related papers (2021-07-05T17:58:52Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - On the Evolution of Neuron Communities in a Deep Learning Architecture [0.7106986689736827]
This paper examines the neuron activation patterns of deep learning-based classification models.
We show that both the community quality (modularity) and entropy are closely related to the deep learning models' performances.
arXiv Detail & Related papers (2021-06-08T21:09:55Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.