Spatial-Spectral Manifold Embedding of Hyperspectral Data
- URL: http://arxiv.org/abs/2007.08767v1
- Date: Fri, 17 Jul 2020 05:40:27 GMT
- Title: Spatial-Spectral Manifold Embedding of Hyperspectral Data
- Authors: Danfeng Hong and Jing Yao and Xin Wu and Jocelyn Chanussot and Xiao
Xiang Zhu
- Abstract summary: We propose a novel hyperspectral embedding approach by simultaneously considering spatial and spectral information.
spatial-spectral manifold embedding (SSME) models the spatial and spectral information jointly in a patch-based fashion.
SSME not only learns the spectral embedding by using the adjacency matrix obtained by similarity measurement between spectral signatures, but also models the spatial neighbours of a target pixel in hyperspectral scene.
- Score: 43.479889860715275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, hyperspectral imaging, also known as imaging spectroscopy,
has been paid an increasing interest in geoscience and remote sensing
community. Hyperspectral imagery is characterized by very rich spectral
information, which enables us to recognize the materials of interest lying on
the surface of the Earth more easier. We have to admit, however, that high
spectral dimension inevitably brings some drawbacks, such as expensive data
storage and transmission, information redundancy, etc. Therefore, to reduce the
spectral dimensionality effectively and learn more discriminative spectral
low-dimensional embedding, in this paper we propose a novel hyperspectral
embedding approach by simultaneously considering spatial and spectral
information, called spatial-spectral manifold embedding (SSME). Beyond the
pixel-wise spectral embedding approaches, SSME models the spatial and spectral
information jointly in a patch-based fashion. SSME not only learns the spectral
embedding by using the adjacency matrix obtained by similarity measurement
between spectral signatures, but also models the spatial neighbours of a target
pixel in hyperspectral scene by sharing the same weights (or edges) in the
process of learning embedding. Classification is explored as a potential
strategy to quantitatively evaluate the performance of learned embedding
representations. Classification is explored as a potential application for
quantitatively evaluating the performance of these hyperspectral embedding
algorithms. Extensive experiments conducted on the widely-used hyperspectral
datasets demonstrate the superiority and effectiveness of the proposed SSME as
compared to several state-of-the-art embedding methods.
Related papers
- Hyperspectral Dataset and Deep Learning methods for Waste from Electric and Electronic Equipment Identification (WEEE) [0.0]
We evaluate the performance of diverse deep learning architectures for hyperspectral image segmentation.
Results show that incorporating spatial information alongside spectral data leads to improved segmentation results.
We contribute to the field by cleaning and publicly releasing the Tecnalia WEEE Hyperspectral dataset.
arXiv Detail & Related papers (2024-07-05T13:45:11Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
Extended Vision techniques often pose a challenge in their interpretation.
The huge dimensionality of data cube spectra poses a complex task in its statistical interpretation.
In this paper, we explore the possibility of applying unsupervised clustering methods in encoded space.
A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm.
arXiv Detail & Related papers (2024-01-31T09:31:28Z) - Unsupervised Spectral Demosaicing with Lightweight Spectral Attention
Networks [6.7433262627741914]
This paper presents a deep learning-based spectral demosaicing technique trained in an unsupervised manner.
The proposed method outperforms conventional unsupervised methods in terms of spatial distortion suppression, spectral fidelity, robustness, and computational cost.
arXiv Detail & Related papers (2023-07-05T02:45:44Z) - A new filter for dimensionality reduction and classification of
hyperspectral images using GLCM features and mutual information [0.0]
We introduce a new methodology for dimensionality reduction and classification of hyperspectral images.
We take into account both spectral and spatial information based on mutual information.
Experiments are performed on three well-known hyperspectral benchmark datasets.
arXiv Detail & Related papers (2022-11-01T13:19:08Z) - Hyperspectral Images Classification and Dimensionality Reduction using
spectral interaction and SVM classifier [0.0]
The high dimensionality of the hyperspectral images (HSI) is one of the main challenges for the analysis of the collected data.
The existence of noisy, redundant and irrelevant bands increases the computational complexity.
We propose a novel filter approach based on the spectral interaction measure and the support vector machines for dimensionality reduction.
arXiv Detail & Related papers (2022-10-27T15:37:57Z) - Incorporating Texture Information into Dimensionality Reduction for
High-Dimensional Images [65.74185962364211]
We present a method for incorporating neighborhood information into distance-based dimensionality reduction methods.
Based on a classification of different methods for comparing image patches, we explore a number of different approaches.
arXiv Detail & Related papers (2022-02-18T13:17:43Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - Joint and Progressive Subspace Analysis (JPSA) with Spatial-Spectral
Manifold Alignment for Semi-Supervised Hyperspectral Dimensionality Reduction [48.73525876467408]
We propose a novel technique for hyperspectral subspace analysis.
The technique is called joint and progressive subspace analysis (JPSA)
Experiments are conducted to demonstrate the superiority and effectiveness of the proposed JPSA on two widely-used hyperspectral datasets.
arXiv Detail & Related papers (2020-09-21T16:29:59Z) - Hyperspectral Image Classification Based on Sparse Modeling of Spectral
Blocks [6.99674326582747]
A sparse modeling framework is proposed for hyperspectral image classification.
The proposed method leads to a robust sparse modeling of hyperspectral images and improves the classification accuracy.
arXiv Detail & Related papers (2020-05-17T08:18:13Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.