Hyperspectral Dataset and Deep Learning methods for Waste from Electric and Electronic Equipment Identification (WEEE)
- URL: http://arxiv.org/abs/2407.04505v1
- Date: Fri, 5 Jul 2024 13:45:11 GMT
- Title: Hyperspectral Dataset and Deep Learning methods for Waste from Electric and Electronic Equipment Identification (WEEE)
- Authors: Artzai Picon, Pablo Galan, Arantza Bereciartua-Perez, Leire Benito-del-Valle,
- Abstract summary: We evaluate the performance of diverse deep learning architectures for hyperspectral image segmentation.
Results show that incorporating spatial information alongside spectral data leads to improved segmentation results.
We contribute to the field by cleaning and publicly releasing the Tecnalia WEEE Hyperspectral dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral imaging, a rapidly evolving field, has witnessed the ascendancy of deep learning techniques, supplanting classical feature extraction and classification methods in various applications. However, many researchers employ arbitrary architectures for hyperspectral image processing, often without rigorous analysis of the interplay between spectral and spatial information. This oversight neglects the implications of combining these two modalities on model performance. In this paper, we evaluate the performance of diverse deep learning architectures for hyperspectral image segmentation. Our analysis disentangles the impact of different architectures, spanning various spectral and spatial granularities. Specifically, we investigate the effects of spectral resolution (capturing spectral information) and spatial texture (conveying spatial details) on segmentation outcomes. Additionally, we explore the transferability of knowledge from large pre-trained image foundation models, originally designed for RGB images, to the hyperspectral domain. Results show that incorporating spatial information alongside spectral data leads to improved segmentation results, and that it is essential to further work on novel architectures comprising spectral and spatial information and on the adaption of RGB foundation models into the hyperspectral domain. Furthermore, we contribute to the field by cleaning and publicly releasing the Tecnalia WEEE Hyperspectral dataset. This dataset contains different non-ferrous fractions of Waste Electrical and Electronic Equipment (WEEE), including Copper, Brass, Aluminum, Stainless Steel, and White Copper, spanning the range of 400 to 1000 nm. We expect these conclusions can guide novel researchers in the field of hyperspectral imaging.
Related papers
- HyperSIGMA: Hyperspectral Intelligence Comprehension Foundation Model [88.13261547704444]
Hyper SIGMA is a vision transformer-based foundation model for HSI interpretation.
It integrates spatial and spectral features using a specially designed spectral enhancement module.
It shows significant advantages in scalability, robustness, cross-modal transferring capability, and real-world applicability.
arXiv Detail & Related papers (2024-06-17T13:22:58Z) - Spectral Image Data Fusion for Multisource Data Augmentation [44.99833362998488]
Multispectral and hyperspectral images are increasingly popular in different research fields, such as remote sensing, astronomical imaging, or precision agriculture.
The amount of free data available to perform machine learning tasks is relatively small.
Artificial intelligence models developed in the area of spectral imaging require input images with a fixed spectral signature.
arXiv Detail & Related papers (2024-04-05T13:40:18Z) - Hyperspectral Image Reconstruction via Combinatorial Embedding of
Cross-Channel Spatio-Spectral Clues [6.580484964018551]
Existing learning-based hyperspectral reconstruction methods show limitations in fully exploiting the information among the hyperspectral bands.
We propose to investigate the inter-dependencies in their respective hyperspectral space.
These embedded features can be fully exploited by querying the inter-channel correlations.
arXiv Detail & Related papers (2023-12-18T11:37:19Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
A universal RS foundation model, named SpectralGPT, is purpose-built to handle spectral RS images using a novel 3D generative pretrained transformer (GPT)
Compared to existing foundation models, SpectralGPT accommodates input images with varying sizes, resolutions, time series, and regions in a progressive training fashion, enabling full utilization of extensive RS big data.
Our evaluation highlights significant performance improvements with pretrained SpectralGPT models, signifying substantial potential in advancing spectral RS big data applications within the field of geoscience.
arXiv Detail & Related papers (2023-11-13T07:09:30Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - High Spectral Spatial Resolution Synthetic HyperSpectral Dataset form
multi-source fusion [7.249349307341409]
This research paper introduces a synthetic hyperspectral dataset that combines high spectral and spatial resolution imaging.
The proposed dataset addresses this limitation by leveraging three modalities: RGB, push-broom visible hyperspectral camera, and snapshot infrared hyperspectral camera.
arXiv Detail & Related papers (2023-06-25T11:17:12Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
We present S2ADet, an object detector that harnesses the rich spectral and spatial complementary information inherent in hyperspectral images.
S2ADet surpasses existing state-of-the-art methods, achieving robust and reliable results.
arXiv Detail & Related papers (2023-06-14T09:01:50Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
We focus on unsupervised techniques for analyzing spectral data from transiting exoplanets.
We show that there is a high degree of correlation in the spectral data, which calls for appropriate low-dimensional representations.
We uncover interesting structures in the principal component basis, namely, well-defined branches corresponding to different chemical regimes.
arXiv Detail & Related papers (2022-01-07T22:26:33Z) - Spatial-Spectral Manifold Embedding of Hyperspectral Data [43.479889860715275]
We propose a novel hyperspectral embedding approach by simultaneously considering spatial and spectral information.
spatial-spectral manifold embedding (SSME) models the spatial and spectral information jointly in a patch-based fashion.
SSME not only learns the spectral embedding by using the adjacency matrix obtained by similarity measurement between spectral signatures, but also models the spatial neighbours of a target pixel in hyperspectral scene.
arXiv Detail & Related papers (2020-07-17T05:40:27Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.