A H\"olderian backtracking method for min-max and min-min problems
- URL: http://arxiv.org/abs/2007.08810v1
- Date: Fri, 17 Jul 2020 08:12:31 GMT
- Title: A H\"olderian backtracking method for min-max and min-min problems
- Authors: J\'er\^ome Bolte (UT1), Lilian Glaudin, Edouard Pauwels (UT3), Mathieu
Serrurier (IRIT-ADRIA)
- Abstract summary: We present a new algorithm to solve min-max or min-min problems out of the convex world.
We use rigidity assumptions, ubiquitous in learning, making our method applicable to many optimization problems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new algorithm to solve min-max or min-min problems out of the
convex world. We use rigidity assumptions, ubiquitous in learning, making our
method applicable to many optimization problems. Our approach takes advantage
of hidden regularity properties and allows us to devise a simple algorithm of
ridge type. An original feature of our method is to come with automatic step
size adaptation which departs from the usual overly cautious backtracking
methods. In a general framework, we provide convergence theoretical guarantees
and rates. We apply our findings on simple GAN problems obtaining promising
numerical results.
Related papers
- Riemannian stochastic optimization methods avoid strict saddle points [68.80251170757647]
We show that policies under study avoid strict saddle points / submanifolds with probability 1.
This result provides an important sanity check as it shows that, almost always, the limit state of an algorithm can only be a local minimizer.
arXiv Detail & Related papers (2023-11-04T11:12:24Z) - Smoothed Analysis of Sequential Probability Assignment [16.090378928208885]
We study information-theoretically optimal minmax rates as well as a framework for algorithmic reduction involving the maximum likelihood estimator oracle.
Our approach establishes a general-purpose reduction from minimax rates for sequential probability assignment for smoothed adversaries to minimax rates for transductive learning.
arXiv Detail & Related papers (2023-03-08T19:25:57Z) - Accelerated SGD for Non-Strongly-Convex Least Squares [14.010916616909743]
We consider approximation for the least squares regression problem in the non-strongly convex setting.
We present the first practical algorithm that achieves the optimal prediction error rates in terms of dependence on the noise of the problem.
arXiv Detail & Related papers (2022-03-03T14:39:33Z) - Continuation Newton methods with deflation techniques for global
optimization problems [3.705839280172101]
A global minimum point of an optimization problem is of interest in engineering.
In this article, we consider a new memetic algorithm for this nonlinear largescale problem.
According to our numerical experiments, new algorithm works well for unconstrained unconstrained problems.
arXiv Detail & Related papers (2021-07-29T09:53:49Z) - Mean Field Approximation for solving QUBO problems [0.0]
We show that the statistical physics approach and the quantum mechanical approach in the mean field annealing give the same result.
Our methods consist of a set of simple gradient-based minimizations with continuous variables, thus easy to simulate.
arXiv Detail & Related papers (2021-06-06T20:35:28Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
We introduce a novel algorithm improving over the state-of-the-art along multiple dimensions.
We establish minimax optimality for any learning horizon in the special case of non-contextual linear bandits.
arXiv Detail & Related papers (2020-10-23T09:12:47Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Exploiting Higher Order Smoothness in Derivative-free Optimization and
Continuous Bandits [99.70167985955352]
We study the problem of zero-order optimization of a strongly convex function.
We consider a randomized approximation of the projected gradient descent algorithm.
Our results imply that the zero-order algorithm is nearly optimal in terms of sample complexity and the problem parameters.
arXiv Detail & Related papers (2020-06-14T10:42:23Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.