Adaptive Gradient Methods for Constrained Convex Optimization and
Variational Inequalities
- URL: http://arxiv.org/abs/2007.08840v3
- Date: Mon, 15 Feb 2021 19:47:21 GMT
- Title: Adaptive Gradient Methods for Constrained Convex Optimization and
Variational Inequalities
- Authors: Alina Ene, Huy L. Nguyen, Adrian Vladu
- Abstract summary: Main algorithms AdaACSA and AdaAGD+ are accelerated methods for constrained convex optimization.
We complement them with a simpler algorithm AdaGrad+ which enjoys the same features, and achieves the standard non-accelerated convergence rate.
- Score: 32.51470158863247
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We provide new adaptive first-order methods for constrained convex
optimization. Our main algorithms AdaACSA and AdaAGD+ are accelerated methods,
which are universal in the sense that they achieve nearly-optimal convergence
rates for both smooth and non-smooth functions, even when they only have access
to stochastic gradients. In addition, they do not require any prior knowledge
on how the objective function is parametrized, since they automatically adjust
their per-coordinate learning rate. These can be seen as truly accelerated
Adagrad methods for constrained optimization.
We complement them with a simpler algorithm AdaGrad+ which enjoys the same
features, and achieves the standard non-accelerated convergence rate. We also
present a set of new results involving adaptive methods for unconstrained
optimization and monotone operators.
Related papers
- ELRA: Exponential learning rate adaption gradient descent optimization
method [83.88591755871734]
We present a novel, fast (exponential rate), ab initio (hyper-free) gradient based adaption.
The main idea of the method is to adapt the $alpha by situational awareness.
It can be applied to problems of any dimensions n and scales only linearly.
arXiv Detail & Related papers (2023-09-12T14:36:13Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
We introduce a class of first-order methods for smooth constrained optimization.
Two distinctive features of our approach are that projections or optimizations over the entire feasible set are avoided.
The resulting algorithmic procedure is simple to implement even when constraints are nonlinear.
arXiv Detail & Related papers (2021-07-17T11:45:13Z) - SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients [99.13839450032408]
It is desired to design a universal framework for adaptive algorithms to solve general problems.
In particular, our novel framework provides adaptive methods under non convergence support for setting.
arXiv Detail & Related papers (2021-06-15T15:16:28Z) - Meta-Regularization: An Approach to Adaptive Choice of the Learning Rate
in Gradient Descent [20.47598828422897]
We propose textit-Meta-Regularization, a novel approach for the adaptive choice of the learning rate in first-order descent methods.
Our approach modifies the objective function by adding a regularization term, and casts the joint process parameters.
arXiv Detail & Related papers (2021-04-12T13:13:34Z) - Projection-Free Adaptive Gradients for Large-Scale Optimization [22.0439695290991]
Frank-Wolfe algorithms occupy a unique position as they alleviate both computational burdens by querying only approximate first-order information from the objective.
We show that our method can improve the performance of adaptive algorithms for constrained optimization.
arXiv Detail & Related papers (2020-09-29T15:56:12Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Adaptive First-and Zeroth-order Methods for Weakly Convex Stochastic
Optimization Problems [12.010310883787911]
We analyze a new family of adaptive subgradient methods for solving an important class of weakly convex (possibly nonsmooth) optimization problems.
Experimental results indicate how the proposed algorithms empirically outperform its zerothorder gradient descent and its design variant.
arXiv Detail & Related papers (2020-05-19T07:44:52Z) - On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization [80.03647903934723]
We prove adaptive gradient methods in expectation of gradient convergence methods.
Our analyses shed light on better adaptive gradient methods in optimizing non understanding gradient bounds.
arXiv Detail & Related papers (2018-08-16T20:25:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.