論文の概要: Multi-scale Interactive Network for Salient Object Detection
- arxiv url: http://arxiv.org/abs/2007.09062v1
- Date: Fri, 17 Jul 2020 15:41:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 14:13:39.588729
- Title: Multi-scale Interactive Network for Salient Object Detection
- Title(参考訳): サルエント物体検出のためのマルチスケールインタラクティブネットワーク
- Authors: Youwei Pang, Xiaoqi Zhao, Lihe Zhang, Huchuan Lu
- Abstract要約: 本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
- 参考スコア(独自算出の注目度): 91.43066633305662
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep-learning based salient object detection methods achieve great progress.
However, the variable scale and unknown category of salient objects are great
challenges all the time. These are closely related to the utilization of
multi-level and multi-scale features. In this paper, we propose the aggregate
interaction modules to integrate the features from adjacent levels, in which
less noise is introduced because of only using small up-/down-sampling rates.
To obtain more efficient multi-scale features from the integrated features, the
self-interaction modules are embedded in each decoder unit. Besides, the class
imbalance issue caused by the scale variation weakens the effect of the binary
cross entropy loss and results in the spatial inconsistency of the predictions.
Therefore, we exploit the consistency-enhanced loss to highlight the
fore-/back-ground difference and preserve the intra-class consistency.
Experimental results on five benchmark datasets demonstrate that the proposed
method without any post-processing performs favorably against 23
state-of-the-art approaches. The source code will be publicly available at
https://github.com/lartpang/MINet.
- Abstract(参考訳): 深層学習に基づく有能な物体検出法は非常に進歩している。
しかし、変数スケールと正当性オブジェクトの未知のカテゴリは、常に大きな課題である。
これらはマルチレベルとマルチスケールの機能の利用と密接に関連している。
本稿では,小型のアップ/ダウンサンプリングレートのみを使用するため,ノイズの少ない隣接レベルからの特徴を統合するための集合的相互作用モジュールを提案する。
統合機能からより効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを組み込む。
さらに, スケール変動によるクラス不均衡問題により, 2次交叉エントロピー損失の影響が弱まり, 予測の空間的不整合が生じる。
そこで我々は,クラス内の一貫性を保ちつつ,フォア/バックグラウンドの違いを強調するために,一貫性に富んだ損失を利用する。
5つのベンチマークデータセットにおける実験結果から,後処理を行わない提案手法は,23の最先端アプローチに対して好適に動作することが示された。
ソースコードはhttps://github.com/lartpang/MINet.comで公開されている。
関連論文リスト
- Robust Network Learning via Inverse Scale Variational Sparsification [55.64935887249435]
時間連続な逆スケール空間の定式化において、逆スケールの変動スペーサー化フレームワークを導入する。
周波数ベースの手法とは異なり、我々の手法は小さな特徴を滑らかにすることでノイズを除去するだけでなく、ノイズを除去する。
各種騒音に対する頑健性の向上によるアプローチの有効性を示す。
論文 参考訳(メタデータ) (2024-09-27T03:17:35Z) - Attend, Distill, Detect: Attention-aware Entropy Distillation for Anomaly Detection [4.0679780034913335]
知識蒸留に基づくマルチクラスの異常検出では、低レイテンシで十分なパフォーマンスが期待できるが、1クラスのバージョンに比べて大幅に低下する。
教師と学生のネットワーク間の蒸留プロセスを改善するDCAM(Distributed Convolutional Attention Module)を提案する。
論文 参考訳(メタデータ) (2024-05-10T13:25:39Z) - Progressive Multi-scale Consistent Network for Multi-class Fundus Lesion
Segmentation [28.58972084293778]
提案するプログレッシブ・フィーチャー・フュージョン(PFF)ブロックと動的アテンション・ブロック(DAB)を統合した,プログレッシブ・マルチスケール・一貫性ネットワーク(PMCNet)を提案する。
PFFブロックは、隣接するエンコーディング層からのマルチスケール機能を段階的に統合し、きめ細かい詳細と高レベルのセマンティクスを集約することで、各層の特徴学習を容易にする。
DABは、異なるスケールで融合した特徴から注意深い手がかりを動的に学習するように設計されているため、マルチスケール機能に存在する本質的な矛盾を円滑にすることを目的としている。
論文 参考訳(メタデータ) (2022-05-31T12:10:01Z) - C$^{4}$Net: Contextual Compression and Complementary Combination Network
for Salient Object Detection [0.0]
機能結合は、乗算や加算のような他の組み合わせ方法よりもうまく機能することを示す。
また、共同特徴学習は、処理中の情報共有のため、より良い結果をもたらす。
論文 参考訳(メタデータ) (2021-10-22T16:14:10Z) - Generalizing Face Forgery Detection with High-frequency Features [63.33397573649408]
現在のCNNベースの検出器は、メソッド固有の色テクスチャに過度に適合するため、一般化に失敗する傾向にある。
フェースフォージェリ検出に高周波雑音を用いることを提案する。
1つは、複数のスケールで高周波ノイズを抽出するマルチスケールの高周波特徴抽出モジュールである。
2つ目は、低レベルRGB特徴抽出器を導く残差誘導空間注意モジュールで、新しい視点からフォージェリートレースにもっと集中する。
論文 参考訳(メタデータ) (2021-03-23T08:19:21Z) - Fine-Grained Dynamic Head for Object Detection [68.70628757217939]
本稿では,各インスタンスの異なるスケールからfpn特徴の画素レベルの組み合わせを条件付きで選択する,きめ細かい動的ヘッドを提案する。
実験は,いくつかの最先端検出ベンチマークにおける提案手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2020-12-07T08:16:32Z) - Towards Better Object Detection in Scale Variation with Adaptive Feature
Selection [3.5352273012717044]
チャネル次元の多レベル表現を融合する方法を自動学習する新しい適応的特徴選択モジュール(AFSM)を提案する。
これは、特徴ピラミッド構造を持つ検出器の性能を著しく向上させる。
クラス不均衡問題に対処するために,クラス対応サンプリング機構(CASM)を提案する。
論文 参考訳(メタデータ) (2020-12-06T13:41:20Z) - Multi-Scale Positive Sample Refinement for Few-Shot Object Detection [61.60255654558682]
Few-shot Object Detection (FSOD) は、ディテクターがトレーニングインスタンスをほとんど持たない未確認のクラスに適応するのに役立つ。
FSODにおけるオブジェクトスケールを拡張化するためのMPSR(Multi-scale Positive Sample Refinement)アプローチを提案する。
MPSRは、オブジェクトピラミッドとして多スケールの正のサンプルを生成し、様々なスケールで予測を洗練させる。
論文 参考訳(メタデータ) (2020-07-18T09:48:29Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
ReMarNet(Relation-and-Margin Learning Network)と呼ばれるニューラルネットワークを導入する。
本手法は,上記2つの分類機構の双方において優れた性能を発揮する特徴を学習するために,異なるバックボーンの2つのネットワークを組み立てる。
4つの画像データセットを用いた実験により,本手法はラベル付きサンプルの小さな集合から識別的特徴を学習するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-06-27T13:50:20Z) - DFNet: Discriminative feature extraction and integration network for
salient object detection [6.959742268104327]
畳み込みニューラルネットワークを用いた唾液度検出における課題の2つの側面に焦点をあてる。
第一に、様々な大きさに有能な物体が現れるため、単一スケールの畳み込みは適切な大きさを捉えない。
第二に、マルチレベル機能の使用は、モデルがローカルコンテキストとグローバルコンテキストの両方を使用するのに役立つ。
論文 参考訳(メタデータ) (2020-04-03T13:56:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。