論文の概要: Robust Network Learning via Inverse Scale Variational Sparsification
- arxiv url: http://arxiv.org/abs/2409.18419v1
- Date: Fri, 27 Sep 2024 03:17:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 06:21:38.249794
- Title: Robust Network Learning via Inverse Scale Variational Sparsification
- Title(参考訳): 逆スケール変分スカラー化によるロバストネットワーク学習
- Authors: Zhiling Zhou, Zirui Liu, Chengming Xu, Yanwei Fu, Xinwei Sun,
- Abstract要約: 時間連続な逆スケール空間の定式化において、逆スケールの変動スペーサー化フレームワークを導入する。
周波数ベースの手法とは異なり、我々の手法は小さな特徴を滑らかにすることでノイズを除去するだけでなく、ノイズを除去する。
各種騒音に対する頑健性の向上によるアプローチの有効性を示す。
- 参考スコア(独自算出の注目度): 55.64935887249435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While neural networks have made significant strides in many AI tasks, they remain vulnerable to a range of noise types, including natural corruptions, adversarial noise, and low-resolution artifacts. Many existing approaches focus on enhancing robustness against specific noise types, limiting their adaptability to others. Previous studies have addressed general robustness by adopting a spectral perspective, which tends to blur crucial features like texture and object contours. Our proposed solution, however, introduces an inverse scale variational sparsification framework within a time-continuous inverse scale space formulation. This framework progressively learns finer-scale features by discerning variational differences between pixels, ultimately preserving only large-scale features in the smoothed image. Unlike frequency-based methods, our approach not only removes noise by smoothing small-scale features where corruptions often occur but also retains high-contrast details such as textures and object contours. Moreover, our framework offers simplicity and efficiency in implementation. By integrating this algorithm into neural network training, we guide the model to prioritize learning large-scale features. We show the efficacy of our approach through enhanced robustness against various noise types.
- Abstract(参考訳): ニューラルネットワークは多くのAIタスクにおいて大きな進歩を遂げてきたが、自然破壊、敵対的ノイズ、低解像度のアーティファクトなど、さまざまなノイズタイプに弱いままである。
既存の多くのアプローチは、特定のノイズタイプに対する堅牢性を強化し、他のものへの適応性を制限することに重点を置いている。
従来の研究は、テクスチャや物体の輪郭といった重要な特徴を曖昧にしがちなスペクトルの観点を採用することで、一般的な堅牢性に対処してきた。
しかし,提案手法では,時間連続な逆スケール空間の定式化において,逆スケールの変動スペーサ化の枠組みを導入する。
このフレームワークは、画素間の違いを識別し、最終的にスムーズな画像の大規模特徴のみを保持することによって、より微細な特徴を徐々に学習する。
周波数に基づく手法と異なり,音質や物体の輪郭といった高コントラストの細部も保持する小型の特徴をスムースにすることで,ノイズを除去する。
さらに、我々のフレームワークは実装の単純さと効率性を提供します。
このアルゴリズムをニューラルネットワークトレーニングに統合することにより、大規模機能の学習を優先するモデルを導出する。
各種騒音に対する頑健性の向上によるアプローチの有効性を示す。
関連論文リスト
- Hierarchical Randomized Smoothing [94.59984692215426]
ランダムな平滑化は、モデルが入力の小さな変更に対して確実に堅牢にするための強力なフレームワークです。
階層的ランダム化平滑化(hierarchical randomized smoothing): ランダムに選択されたエンティティのサブセットにのみランダムノイズを加えることで、部分的に滑らかなオブジェクトを生成する。
画像およびノード分類における階層的スムージングの重要性を実験的に示す。
論文 参考訳(メタデータ) (2023-10-24T22:24:44Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - PRISTA-Net: Deep Iterative Shrinkage Thresholding Network for Coded
Diffraction Patterns Phase Retrieval [6.982256124089]
位相検索は、計算画像および画像処理における非線型逆問題である。
我々は,1次反復しきい値しきい値アルゴリズム(ISTA)に基づく深層展開ネットワークであるPRISTA-Netを開発した。
非線形変換,しきい値,ステップサイズなど,提案するPRISTA-Netフレームワークのパラメータはすべて,設定されるのではなく,エンドツーエンドで学習される。
論文 参考訳(メタデータ) (2023-09-08T07:37:15Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
本研究は、深層学習とマルチセットニューロンのアプローチの比較実験を開発する。
ディープラーニングアプローチは、画像セグメンテーションの実行の可能性を確認した。
代替のマルチセット手法では、計算資源をほとんど必要とせずに精度を向上することができた。
論文 参考訳(メタデータ) (2023-07-19T16:42:52Z) - Ambiguity in solving imaging inverse problems with deep learning based
operators [0.0]
大規模な畳み込みニューラルネットワークは、画像分解のためのツールとして広く利用されている。
画像の劣化は, 逆問題として数学的にモデル化され, ノイズがデータに与える影響を近似することは困難である。
本稿では,深層学習に基づく画像の復号化に多くの精度を損なうことなく,安定性を向上する手法を提案する。
論文 参考訳(メタデータ) (2023-05-31T12:07:08Z) - Multi-Frequency-Aware Patch Adversarial Learning for Neural Point Cloud
Rendering [7.522462414919854]
ニューラルポイントクラウドレンダリングパイプラインを、新しいマルチ周波数対応パッチ対向学習フレームワークを通じて提示する。
提案手法は,実画像と合成画像のスペクトル差を最小化することにより,レンダリングの精度を向上させることを目的としている。
提案手法は,ニューラルポイントクラウドレンダリングにおける最先端の結果を有意差で生成する。
論文 参考訳(メタデータ) (2022-10-07T16:54:15Z) - Dynamic Feature Regularized Loss for Weakly Supervised Semantic
Segmentation [37.43674181562307]
動的に更新される浅度と深度の両方の機能を利用する新たな正規化損失を提案する。
提案手法は,新しい最先端性能を実現し,他の手法よりも6%以上のmIoU増加率で優れたマージンを達成している。
論文 参考訳(メタデータ) (2021-08-03T05:11:00Z) - Encoding Robustness to Image Style via Adversarial Feature Perturbations [72.81911076841408]
我々は、画像画素ではなく特徴統計を直接摂動することで、頑健なモデルを生成することで、敵の訓練に適応する。
提案手法であるAdvBN(Adversarial Batch Normalization)は,トレーニング中に最悪の機能摂動を発生させる単一ネットワーク層である。
論文 参考訳(メタデータ) (2020-09-18T17:52:34Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
論文 参考訳(メタデータ) (2020-07-17T15:41:37Z) - Spatial-Adaptive Network for Single Image Denoising [14.643663950015334]
本稿では,効率的な単一画像ブラインドノイズ除去のための空間適応型雑音除去ネットワーク(SADNet)を提案する。
本手法は, 定量的かつ視覚的に, 最先端の復調法を超越することができる。
論文 参考訳(メタデータ) (2020-01-28T12:24:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。