Entangling the vibrational modes of two massive ferromagnetic spheres
using cavity magnomechanics
- URL: http://arxiv.org/abs/2007.09083v3
- Date: Thu, 18 Feb 2021 02:24:24 GMT
- Title: Entangling the vibrational modes of two massive ferromagnetic spheres
using cavity magnomechanics
- Authors: Jie Li, Simon Gr\"oblacher
- Abstract summary: We present a scheme to entangle the vibrational phonon modes of two massive ferromagnetic spheres in a dual-cavity magnomechanical system.
Our work demonstrates that cavity magnomechanical systems allow to prepare quantum entangled states at a more massive scale than currently possible with other schemes.
- Score: 10.128856077021625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a scheme to entangle the vibrational phonon modes of two massive
ferromagnetic spheres in a dual-cavity magnomechanical system. In each cavity,
a microwave cavity mode couples to a magnon mode (spin wave) via the magnetic
dipole interaction, and the latter further couples to a deformation phonon mode
of the ferromagnetic sphere via a nonlinear magnetostrictive interaction. We
show that by directly driving the magnon mode with a red-detuned microwave
field to activate the magnomechanical anti-Stokes process a
cavity-magnon-phonon state-swap interaction can be realized. Therefore, if the
two cavities are further driven by a two-mode squeezed vacuum field, the
quantum correlation of the driving fields is successively transferred to the
two magnon modes and subsequently to the two phonon modes, i.e., the two
ferromagnetic spheres become remotely entangled. Our work demonstrates that
cavity magnomechanical systems allow to prepare quantum entangled states at a
more massive scale than currently possible with other schemes.
Related papers
- Antiferromagnetic Quantum Anomalous Hall Effect Modulated by Spin Flips and Flops [23.17305544412557]
We fabricate a device of 7-septuple-layer MnBi2Te4 covered with AlOx capping layer.
We uncover a cascade of quantum phase transitions that can be attributed to the influence of spin configurations on charge transport.
The versatile tunability of the quantum anomalous Hall effect in MnBi2Te4 paves the way for potential applications in topological antiferromagnetic spintronics.
arXiv Detail & Related papers (2024-05-14T15:08:07Z) - Macroscopic entanglement between ferrimagnetic magnons and atoms via
crossed optical cavity [5.151140055918105]
Two-dimensional opto-magnomechanical (OMM) system includes two optical cavity modes, a magnon mode, a phonon mode, and a collection of two-level atoms.
In this study, we demonstrate the methodology for generating stationary entanglement between two-level atoms and magnons.
arXiv Detail & Related papers (2023-12-19T05:26:03Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Reservoir engineering strong quantum entanglement in cavity
magnomechanical systems [8.590363269272698]
We construct a hybrid cavity magnomechanical system to transfer the bipartite entanglements and achieve the strong microwave photon-phonon entanglement.
The scheme may provides potential applications for quantum information processing, and is expected to be extended to other three-mode systems.
arXiv Detail & Related papers (2022-06-29T02:12:55Z) - Entangling mechanical vibrations of two massive ferrimagnets by fully
exploiting the nonlinearity of magnetostriction [8.573839921517958]
We show how to entangle the mechanical vibration modes of two massive ferrimagnets placed in the same microwave cavity.
The previously generated phonon-magnon entanglement is transferred to the mechanical modes of two ferrimagnets.
arXiv Detail & Related papers (2022-04-29T10:47:32Z) - Dissipative generation of significant amount of photon-phonon asymmetric
steering in magnomechanical interfaces [4.352482759052892]
We propose an effective approach for generating significant amount of entanglement and asymmetric steering between photon and phonon in a cavity magnomechanical system.
In particular, strong two-way and one-way asymmetric quantum steering between the photon and phonon modes can be obtained with even equal dissipation.
arXiv Detail & Related papers (2022-01-22T05:29:02Z) - Observation of magnon cross-Kerr effect in cavity magnonics [14.59692505962837]
In cavity magnonics, we show both experimentally and theoretically the cross-Kerr-type interaction between the Kittel mode and HMS mode.
Our results will bring new methods to magnetization dynamics studies and pave a way for novel cavity magnonic devices.
arXiv Detail & Related papers (2021-12-27T17:52:08Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Cavity magnomechanical storage and retrieval of quantum states [0.0]
We show how a quantum state in a microwave cavity mode can be transferred to and stored in a phononic mode via an intermediate magnon mode in a magnomechanical system.
The phononic mode can be used to store the photonic quantum state for long periods as it possesses lower damping than the photonic and magnon modes.
arXiv Detail & Related papers (2021-04-26T02:43:07Z) - Multimode-polariton superradiance via Floquet engineering [55.41644538483948]
We consider an ensemble of ultracold bosonic atoms within a near-planar cavity, driven by a far detuned laser.
We show that a strong, dispersive atom-photon coupling can be reached for many transverse cavity modes at once.
The resulting Floquet polaritons involve a superposition of a set of cavity modes with a density of excitation of the atomic cloud.
arXiv Detail & Related papers (2020-11-24T19:00:04Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.