Nonreciprocal entanglement in cavity magnomechanics exploiting chiral cavity-magnon coupling
- URL: http://arxiv.org/abs/2401.02280v4
- Date: Mon, 17 Feb 2025 07:54:38 GMT
- Title: Nonreciprocal entanglement in cavity magnomechanics exploiting chiral cavity-magnon coupling
- Authors: Zhi-Yuan Fan, Xuan Zuo, Hao-Tian Li, Jie Li,
- Abstract summary: We propose a new mechanism to achieve nonreciprocal quantum entanglement in a cavity magnomechanical system.
The work may find promising applications in noise-tolerant quantum processing, channel multiplexing quantum teleportation, and chiral magnonic quantum networks.
- Score: 8.13512137938837
- License:
- Abstract: We propose a new mechanism to achieve nonreciprocal quantum entanglement in a cavity magnomechanical system by exploiting the chiral cavity-magnon coupling. The system consists of a magnon mode, a mechanical vibration mode, and two degenerate counter-propagating microwave cavity modes in a torus-shaped cavity. We show that nonreciprocal stationary microwave-magnon and -phonon bipartite entanglements and photon-magnon-phonon tripartite entanglement can be achieved by respectively driving different circulating cavity modes that hold a chiral coupling to the magnon mode. The nonreciprocal entanglements are shown to be robust against various experimental imperfections. We specifically show how such nonreciprocal entanglement can realize the channel multiplexing quantum teleportation from a microwave field to a solid-state magnon mode. The work may find promising applications of the cavity magnomechanical systems in noise-tolerant quantum processing, channel multiplexing quantum teleportation, and chiral magnonic quantum networks.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Magnon squeezing by two-tone driving of a qubit in cavity-magnon-qubit
systems [7.123040671954896]
We propose a scheme for preparing magnon squeezed states in a hybrid cavity-magnon-qubit system.
The generated squeezed states are of a magnon mode involving more than $1018$ spins and thus macroscopic quantum states.
arXiv Detail & Related papers (2023-04-21T06:09:13Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Magnon squeezing enhanced entanglement in a cavity magnomechanical
system [3.5686258173451995]
We investigate the generation of entanglement in a cavity magnomechanical system.
By introducing a squeezing of the magnon mode, the magnon-photon and the magnon-phonon entanglements are significantly enhanced.
This study provides a new idea for exploring the properties of quantum entanglement in the the cavity magnomechanical systems.
arXiv Detail & Related papers (2022-05-29T03:56:40Z) - Dissipative generation of significant amount of photon-phonon asymmetric
steering in magnomechanical interfaces [4.352482759052892]
We propose an effective approach for generating significant amount of entanglement and asymmetric steering between photon and phonon in a cavity magnomechanical system.
In particular, strong two-way and one-way asymmetric quantum steering between the photon and phonon modes can be obtained with even equal dissipation.
arXiv Detail & Related papers (2022-01-22T05:29:02Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Nonreciprocal Transmission and Entanglement in a cavity-magnomechanical
system [10.520692160489133]
Quantum entanglement is generated with a cavity-magnomechanical system.
By breaking symmetry of the configuration, we realize nonreciprocal photon transmission and one-way bipartite quantum entanglement.
arXiv Detail & Related papers (2021-01-25T07:41:40Z) - Quantum manipulation of a two-level mechanical system [19.444636864515726]
We consider a nonlinearly coupled electromechanical system, and develop a quantitative theory for two-phonon cooling.
In the presence of two-phonon cooling, the mechanical Hilbert space is effectively reduced to its ground and first excited states.
We propose a scheme for performing arbitrary Bloch sphere rotations, and derive the fidelity in the specific case of a $pi$-pulse.
arXiv Detail & Related papers (2021-01-05T19:34:44Z) - Entangling the vibrational modes of two massive ferromagnetic spheres
using cavity magnomechanics [10.128856077021625]
We present a scheme to entangle the vibrational phonon modes of two massive ferromagnetic spheres in a dual-cavity magnomechanical system.
Our work demonstrates that cavity magnomechanical systems allow to prepare quantum entangled states at a more massive scale than currently possible with other schemes.
arXiv Detail & Related papers (2020-07-17T16:05:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.