Cavity magnomechanical storage and retrieval of quantum states
- URL: http://arxiv.org/abs/2104.12323v1
- Date: Mon, 26 Apr 2021 02:43:07 GMT
- Title: Cavity magnomechanical storage and retrieval of quantum states
- Authors: Bijita Sarma, Thomas Busch, Jason Twamley
- Abstract summary: We show how a quantum state in a microwave cavity mode can be transferred to and stored in a phononic mode via an intermediate magnon mode in a magnomechanical system.
The phononic mode can be used to store the photonic quantum state for long periods as it possesses lower damping than the photonic and magnon modes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show how a quantum state in a microwave cavity mode can be transferred to
and stored in a phononic mode via an intermediate magnon mode in a
magnomechanical system. For this we consider a ferrimagnetic yttrium iron
garnet (YIG) sphere inserted in a microwave cavity, where the microwave and
magnon modes are coupled via a magnetic-dipole interaction and the magnon and
phonon modes in the YIG sphere are coupled via magnetostrictive forces. By
modulating the cavity and magnon detunings and the driving of the magnon mode
in time, a Stimulated Raman Adiabatic Passage (STIRAP)-like coherent transfer
becomes possible between the cavity mode and the phonon mode. The phononic mode
can be used to store the photonic quantum state for long periods as it
possesses lower damping than the photonic and magnon modes. Thus our proposed
scheme offers a possibility of using magnomechanical systems as quantum memory
for photonic quantum information.
Related papers
- Magnon squeezing by two-tone driving of a qubit in cavity-magnon-qubit
systems [7.123040671954896]
We propose a scheme for preparing magnon squeezed states in a hybrid cavity-magnon-qubit system.
The generated squeezed states are of a magnon mode involving more than $1018$ spins and thus macroscopic quantum states.
arXiv Detail & Related papers (2023-04-21T06:09:13Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Reservoir engineering strong quantum entanglement in cavity
magnomechanical systems [8.590363269272698]
We construct a hybrid cavity magnomechanical system to transfer the bipartite entanglements and achieve the strong microwave photon-phonon entanglement.
The scheme may provides potential applications for quantum information processing, and is expected to be extended to other three-mode systems.
arXiv Detail & Related papers (2022-06-29T02:12:55Z) - Magnon squeezing enhanced entanglement in a cavity magnomechanical
system [3.5686258173451995]
We investigate the generation of entanglement in a cavity magnomechanical system.
By introducing a squeezing of the magnon mode, the magnon-photon and the magnon-phonon entanglements are significantly enhanced.
This study provides a new idea for exploring the properties of quantum entanglement in the the cavity magnomechanical systems.
arXiv Detail & Related papers (2022-05-29T03:56:40Z) - Continuous-Wave Frequency Upconversion with a Molecular Optomechanical
Nanocavity [46.43254474406406]
We use molecular cavity optomechanics to demonstrate upconversion of sub-microwatt continuous-wave signals at $sim$32THz into the visible domain at ambient conditions.
The device consists in a plasmonic nanocavity hosting a small number of molecules. The incoming field resonantly drives a collective molecular vibration, which imprints an optomechanical modulation on a visible pump laser.
arXiv Detail & Related papers (2021-07-07T06:23:14Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Coherent control in the ground and optically excited state of an
ensemble of erbium dopants [55.41644538483948]
Ensembles of erbium dopants can realize quantum memories and frequency converters.
In this work, we use a split-ring microwave resonator to demonstrate such control in both the ground and optically excited state.
arXiv Detail & Related papers (2021-05-18T13:03:38Z) - Photon Condensation and Enhanced Magnetism in Cavity QED [68.8204255655161]
A system of magnetic molecules coupled to microwave cavities undergoes the equilibrium superradiant phase transition.
The effect of the coupling is first illustrated by the vacuum-induced ferromagnetic order in a quantum Ising model.
A transmission experiment is shown to resolve the transition, measuring the quantum electrodynamical control of magnetism.
arXiv Detail & Related papers (2020-11-07T11:18:24Z) - Entangling the vibrational modes of two massive ferromagnetic spheres
using cavity magnomechanics [10.128856077021625]
We present a scheme to entangle the vibrational phonon modes of two massive ferromagnetic spheres in a dual-cavity magnomechanical system.
Our work demonstrates that cavity magnomechanical systems allow to prepare quantum entangled states at a more massive scale than currently possible with other schemes.
arXiv Detail & Related papers (2020-07-17T16:05:30Z) - Stationary entanglement between light and microwave via ferromagnetic
magnons [7.922177718603974]
We show how to generate stationary entanglement between light and microwave in a hybrid opto-electro-magnonical system.
The optical modes in nanofiber can evanescently coupled to whispering gallery modes, that are able to interact with magnon mode via spin-orbit interaction.
arXiv Detail & Related papers (2020-05-10T05:16:45Z) - Quantum interactions with pulses of radiation [77.34726150561087]
This article presents a general master equation formalism for the interaction between travelling pulses of quantum radiation and localized quantum systems.
We develop a complete input-output theory to describe the driving of quantum systems by arbitrary incident pulses of radiation and the quantum state of the field emitted into any desired outgoing temporal mode.
arXiv Detail & Related papers (2020-03-10T08:35:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.