論文の概要: Synthetic and Real Inputs for Tool Segmentation in Robotic Surgery
- arxiv url: http://arxiv.org/abs/2007.09107v2
- Date: Sun, 26 Jul 2020 08:27:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 13:38:50.003969
- Title: Synthetic and Real Inputs for Tool Segmentation in Robotic Surgery
- Title(参考訳): ロボット手術におけるツールセグメンテーションのための合成と実入力
- Authors: Emanuele Colleoni, Philip Edwards, Danail Stoyanov
- Abstract要約: 腹腔鏡画像と組み合わせたロボットキネマティックデータを用いてラベル付け問題を緩和できる可能性が示唆された。
腹腔鏡画像とシミュレーション画像の並列処理のための新しい深層学習モデルを提案する。
- 参考スコア(独自算出の注目度): 10.562627972607892
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic tool segmentation in surgical videos is important for surgical scene
understanding and computer-assisted interventions as well as for the
development of robotic automation. The problem is challenging because different
illumination conditions, bleeding, smoke and occlusions can reduce algorithm
robustness. At present labelled data for training deep learning models is still
lacking for semantic surgical instrument segmentation and in this paper we show
that it may be possible to use robot kinematic data coupled with laparoscopic
images to alleviate the labelling problem. We propose a new deep learning based
model for parallel processing of both laparoscopic and simulation images for
robust segmentation of surgical tools. Due to the lack of laparoscopic frames
annotated with both segmentation ground truth and kinematic information a new
custom dataset was generated using the da Vinci Research Kit (dVRK) and is made
available.
- Abstract(参考訳): 手術映像のセマンティックツールセグメンテーションは,手術シーン理解やコンピュータ支援の介入,ロボット自動化の開発に重要である。
この問題は、様々な照明条件、出血、煙、閉塞がアルゴリズムの堅牢性を低下させる可能性があるため、難しい。
ディープラーニングモデルの学習のためのラベル付きデータはまだ意味的手術用機器のセグメンテーションに不足しており,本稿では,ラパロスコープ画像と結合したロボットキネマティックデータを用いてラパロスコープ問題を軽減することが可能であることを示す。
本稿では,手術器具のロバスト分割のための腹腔鏡およびシミュレーション画像の並列処理のための新しい深層学習モデルを提案する。
セグメンテーションとキネマティック情報の両方に注釈を付けた腹腔鏡フレームの欠如により、da Vinci Research Kit (dVRK)を使用して新しいカスタムデータセットが生成され、利用可能になった。
関連論文リスト
- CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries [29.201385352740555]
そこで我々は,様々な外科手術を施した楽器の先端を正確に分類する新しいビジュアル・キネマティクスグラフ学習フレームワークを提案する。
具体的には、画像とキネマティクスの両方から楽器部品のリレーショナル特徴を符号化するグラフ学習フレームワークを提案する。
クロスモーダル・コントラッシブ・ロスは、キネマティクスからチップセグメンテーションのイメージへの頑健な幾何学的先行を組み込むように設計されている。
論文 参考訳(メタデータ) (2023-09-02T14:52:58Z) - Surgical tool classification and localization: results and methods from
the MICCAI 2022 SurgToolLoc challenge [69.91670788430162]
SurgLoc 2022 チャレンジの結果を示す。
目標は、ツール検出のためにトレーニングされた機械学習モデルにおいて、ツールの存在データを弱いラベルとして活用することだった。
これらの結果を機械学習と手術データ科学の幅広い文脈で論じることで結論付ける。
論文 参考訳(メタデータ) (2023-05-11T21:44:39Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - AutoLaparo: A New Dataset of Integrated Multi-tasks for Image-guided
Surgical Automation in Laparoscopic Hysterectomy [42.20922574566824]
ヒステリクトミー手術における学習ベースの自動化を容易にするために,複数の画像に基づく知覚タスクを組み込んだ最初の統合データセットを提示,リリースする。
我々のAutoLaparoデータセットは、全子宮摘出術のフル長ビデオに基づいて開発されている。
具体的には、外科的ワークフロー認識、腹腔鏡運動予測、機器とキー解剖のセグメンテーションを含む、3つの異なる高相関なタスクがデータセットで定式化されている。
論文 参考訳(メタデータ) (2022-08-03T13:17:23Z) - Rethinking Surgical Instrument Segmentation: A Background Image Can Be
All You Need [18.830738606514736]
データ不足と不均衡はモデルの精度に大きな影響を与え、ディープラーニングベースの手術アプリケーションの設計と展開を制限してきた。
本稿では,ロボット手術によるデータ収集とアノテーションの複雑で高価なプロセスを排除する,1対多のデータ生成ソリューションを提案する。
経験的分析から,高コストなデータ収集とアノテーションがなければ,適切な手術器具のセグメンテーション性能が達成できることが示唆された。
論文 参考訳(メタデータ) (2022-06-23T16:22:56Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
本稿では,マルチモーダルグラフネットワーク(MRG-Net)の新たなオンラインアプローチを提案し,視覚情報とキネマティクス情報を動的に統合する。
本手法の有効性は, JIGSAWSデータセット上での最先端の成果で実証された。
論文 参考訳(メタデータ) (2020-11-03T11:00:10Z) - Real-Time Instrument Segmentation in Robotic Surgery using Auxiliary
Supervised Deep Adversarial Learning [15.490603884631764]
ロボット機器と組織のリアルタイムセマンティックセグメンテーションは、ロボット支援手術において重要なステップである。
我々は,高解像度ビデオから手術器具を分割する軽量カスケード畳み込みニューラルネットワーク(CNN)を開発した。
高解像度ビデオの予測精度とセグメンテーション時間の両方において,術具の画素単位のセグメンテーションのための既存のアルゴリズムを超越していることを示す。
論文 参考訳(メタデータ) (2020-07-22T10:16:07Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
ほとんどのアプリケーションは、高解像度の外科画像の正確なリアルタイムセグメンテーションに依存している。
我々は,高解像度画像のリアルタイム推論を行うために調整された,軽量で高効率なディープ残差アーキテクチャを設計する。
論文 参考訳(メタデータ) (2020-07-08T21:38:29Z) - Recurrent and Spiking Modeling of Sparse Surgical Kinematics [0.8458020117487898]
ますます多くの研究が、手術ロボットが捉えたビデオやキネマティックなデータを機械学習で分析している。
本研究では,同様のスキルレベルの外科医を予測するために,キネマティックデータのみを用いることの可能性を検討する。
本報告では, 運動特性のみに基づいて, シミュレーションエクササイズにおいて, ほぼ完全スコアの手術者を特定することが可能である。
論文 参考訳(メタデータ) (2020-05-12T15:41:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。