論文の概要: Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries
- arxiv url: http://arxiv.org/abs/2309.00957v1
- Date: Sat, 2 Sep 2023 14:52:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 00:08:01.907462
- Title: Visual-Kinematics Graph Learning for Procedure-agnostic Instrument Tip
Segmentation in Robotic Surgeries
- Title(参考訳): 視覚運動学グラフ学習によるロボット手術における手技非依存な針先セグメンテーション
- Authors: Jiaqi Liu, Yonghao Long, Kai Chen, Cheuk Hei Leung, Zerui Wang, Qi Dou
- Abstract要約: そこで我々は,様々な外科手術を施した楽器の先端を正確に分類する新しいビジュアル・キネマティクスグラフ学習フレームワークを提案する。
具体的には、画像とキネマティクスの両方から楽器部品のリレーショナル特徴を符号化するグラフ学習フレームワークを提案する。
クロスモーダル・コントラッシブ・ロスは、キネマティクスからチップセグメンテーションのイメージへの頑健な幾何学的先行を組み込むように設計されている。
- 参考スコア(独自算出の注目度): 29.201385352740555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate segmentation of surgical instrument tip is an important task for
enabling downstream applications in robotic surgery, such as surgical skill
assessment, tool-tissue interaction and deformation modeling, as well as
surgical autonomy. However, this task is very challenging due to the small
sizes of surgical instrument tips, and significant variance of surgical scenes
across different procedures. Although much effort has been made on visual-based
methods, existing segmentation models still suffer from low robustness thus not
usable in practice. Fortunately, kinematics data from the robotic system can
provide reliable prior for instrument location, which is consistent regardless
of different surgery types. To make use of such multi-modal information, we
propose a novel visual-kinematics graph learning framework to accurately
segment the instrument tip given various surgical procedures. Specifically, a
graph learning framework is proposed to encode relational features of
instrument parts from both image and kinematics. Next, a cross-modal
contrastive loss is designed to incorporate robust geometric prior from
kinematics to image for tip segmentation. We have conducted experiments on a
private paired visual-kinematics dataset including multiple procedures, i.e.,
prostatectomy, total mesorectal excision, fundoplication and distal gastrectomy
on cadaver, and distal gastrectomy on porcine. The leave-one-procedure-out
cross validation demonstrated that our proposed multi-modal segmentation method
significantly outperformed current image-based state-of-the-art approaches,
exceeding averagely 11.2% on Dice.
- Abstract(参考訳): 手術器具先端の正確なセグメンテーションは、外科的スキル評価、ツールとタスクの相互作用、変形モデリング、および外科的自律性など、ロボット手術における下流の応用を可能にする重要なタスクである。
しかし,手術器具の先端部の大きさが小さく,手術場面のばらつきが異なっていたため,この課題は非常に困難である。
視覚ベースの手法では多くの努力がなされているが、既存のセグメンテーションモデルはまだ低ロバスト性に苦しんでいるため、実際には使用できない。
幸いなことに、ロボットシステムのキネマティクスデータは、さまざまな手術の種類によらず、信頼性の高い機器位置を提供することができる。
このようなマルチモーダル情報を利用するために,様々な手術手順を施し,楽器先端を正確に分割する視覚運動グラフ学習フレームワークを提案する。
具体的には、画像とキネマティクスの両方から楽器部品のリレーショナル特徴を符号化するグラフ学習フレームワークを提案する。
次に、クロスモーダルコントラスト損失は、キネマティックスから先端セグメンテーションのイメージへのロバストな幾何学的先行を組み込むように設計されている。
今回我々は, 前立腺摘出術, 腸間膜全摘術, 開腹術, 遠位胃切除術, ブタ胃切除術など, 民間の視覚運動学データセットを用いた実験を行った。
従来のマルチモーダルセグメンテーション手法は,diceでは平均11.2%を上回り,現在の画像に基づく最先端手法を有意に上回っていた。
関連論文リスト
- VISAGE: Video Synthesis using Action Graphs for Surgery [34.21344214645662]
腹腔鏡下手術における映像生成の新しい課題について紹介する。
提案手法であるVISAGEは,アクションシーングラフのパワーを利用して,腹腔鏡下手術のシーケンシャルな特徴を捉える。
腹腔鏡下手術における高忠実度ビデオ生成について検討した。
論文 参考訳(メタデータ) (2024-10-23T10:28:17Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - Hierarchical Semi-Supervised Learning Framework for Surgical Gesture
Segmentation and Recognition Based on Multi-Modality Data [2.8770761243361593]
多モードデータを用いた外科的ジェスチャー分割のための階層型半教師付き学習フレームワークを開発した。
トレーニング済みのResNet-18'バックボーンを備えたTransformerベースのネットワークを使用して,手術ビデオから視覚的特徴を抽出する。
提案手法は、Suturing, Needle Passing, Knot Tyingタスクを含む、公開されているJIGSデータベースのデータを用いて評価されている。
論文 参考訳(メタデータ) (2023-07-31T21:17:59Z) - GLSFormer : Gated - Long, Short Sequence Transformer for Step
Recognition in Surgical Videos [57.93194315839009]
本稿では,シーケンスレベルのパッチから時間的特徴を直接学習するための視覚変換器に基づくアプローチを提案する。
本研究では,白内障手術用ビデオデータセットである白内障-101とD99に対するアプローチを広範に評価し,各種の最先端手法と比較して優れた性能を示した。
論文 参考訳(メタデータ) (2023-07-20T17:57:04Z) - Next-generation Surgical Navigation: Marker-less Multi-view 6DoF Pose
Estimation of Surgical Instruments [66.74633676595889]
静止カメラとヘッドマウントカメラを組み合わせたマルチカメラ・キャプチャー・セットアップを提案する。
第2に,手術用ウェットラボと実際の手術用劇場で撮影された元脊椎手術のマルチビューRGB-Dビデオデータセットを公表した。
第3に,手術器具の6DoFポーズ推定の課題に対して,最先端のシングルビューとマルチビューの3つの手法を評価した。
論文 参考訳(メタデータ) (2023-05-05T13:42:19Z) - Rethinking Surgical Instrument Segmentation: A Background Image Can Be
All You Need [18.830738606514736]
データ不足と不均衡はモデルの精度に大きな影響を与え、ディープラーニングベースの手術アプリケーションの設計と展開を制限してきた。
本稿では,ロボット手術によるデータ収集とアノテーションの複雑で高価なプロセスを排除する,1対多のデータ生成ソリューションを提案する。
経験的分析から,高コストなデータ収集とアノテーションがなければ,適切な手術器具のセグメンテーション性能が達成できることが示唆された。
論文 参考訳(メタデータ) (2022-06-23T16:22:56Z) - Multimodal Semantic Scene Graphs for Holistic Modeling of Surgical
Procedures [70.69948035469467]
カメラビューから3Dグラフを生成するための最新のコンピュータビジョン手法を利用する。
次に,手術手順の象徴的,意味的表現を統一することを目的としたマルチモーダルセマンティックグラフシーン(MSSG)を紹介する。
論文 参考訳(メタデータ) (2021-06-09T14:35:44Z) - Synthetic and Real Inputs for Tool Segmentation in Robotic Surgery [10.562627972607892]
腹腔鏡画像と組み合わせたロボットキネマティックデータを用いてラベル付け問題を緩和できる可能性が示唆された。
腹腔鏡画像とシミュレーション画像の並列処理のための新しい深層学習モデルを提案する。
論文 参考訳(メタデータ) (2020-07-17T16:33:33Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
本稿では、入力された内視鏡画像と対応するアノテーションとのマッピングを学習することを目的として、未ペア画像から画像への変換を提案する。
当社のアプローチでは,高価なアノテーションを取得することなく,イメージセグメンテーションモデルをトレーニングすることが可能です。
提案手法をEndovis 2017チャレンジデータセットで検証し,教師付きセグメンテーション手法と競合することを示す。
論文 参考訳(メタデータ) (2020-07-09T01:39:39Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。