論文の概要: Dealing with Nuisance Parameters using Machine Learning in High Energy
Physics: a Review
- arxiv url: http://arxiv.org/abs/2007.09121v2
- Date: Sun, 17 Jan 2021 16:34:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 13:49:34.932548
- Title: Dealing with Nuisance Parameters using Machine Learning in High Energy
Physics: a Review
- Title(参考訳): 高エネルギー物理学における機械学習を用いた迷惑パラメータの扱い
- Authors: Tommaso Dorigo and Pablo de Castro
- Abstract要約: 高エネルギー物理問題におけるニュアンスパラメータが機械学習の有効性に与える影響を考察する。
最適選択基準と変分変換の探索において,その効果を取り入れ,その影響を低減できる手法のレビューを行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we discuss the impact of nuisance parameters on the
effectiveness of machine learning in high-energy physics problems, and provide
a review of techniques that allow to include their effect and reduce their
impact in the search for optimal selection criteria and variable
transformations. The introduction of nuisance parameters complicates the
supervised learning task and its correspondence with the data analysis goal,
due to their contribution degrading the model performances in real data, and
the necessary addition of uncertainties in the resulting statistical inference.
The approaches discussed include nuisance-parameterized models, modified or
adversary losses, semi-supervised learning approaches, and inference-aware
techniques.
- Abstract(参考訳): 本研究では,高エネルギー物理学問題における機械学習の有効性に対するニュアサンスパラメータの影響を考察し,それらの効果を包含し,最適な選択基準と変数変換の探索における効果を低減できる手法のレビューを行う。
ニュアンスパラメータの導入は、実データにおけるモデル性能を劣化させ、その結果の統計的推測に不確実性を加えることによる、教師付き学習課題とそのデータ解析目標との対応を複雑化する。
議論されたアプローチには、ニュアサンスパラメータモデル、修正または逆損失、半教師付き学習アプローチ、推論認識技術が含まれる。
関連論文リスト
- Mitigating Parameter Degeneracy using Joint Conditional Diffusion Model for WECC Composite Load Model in Power Systems [2.7212274374272543]
連立条件拡散モデルに基づく逆問題解法(JCDI)を開発した。
JCDIは、パラメータの一般化性を改善するために、マルチイベント観測を同時に入力するジョイントコンディショニングアーキテクチャを組み込んでいる。
WECC CLMのシミュレーション研究により、提案したJCDIは縮退パラメータの不確かさを効果的に低減することを示した。
論文 参考訳(メタデータ) (2024-11-15T18:53:08Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Parameter Efficient Fine Tuning: A Comprehensive Analysis Across Applications [0.7421845364041001]
ディープラーニングの台頭は、コンピュータビジョン、自然言語処理、医療画像などの分野で大きな進歩を遂げている。
すべてのパラメータの調整を含む従来の微調整手法は、高い計算量とメモリ要求のために課題に直面している。
本稿では,計算効率と性能のバランスをとるためにパラメータを選択的に更新するPEFT(Efficient Fine-Tuning)手法について検討する。
論文 参考訳(メタデータ) (2024-04-21T02:26:15Z) - Sine Activated Low-Rank Matrices for Parameter Efficient Learning [25.12262017296922]
低ランク分解過程に正弦波関数を統合する新しい理論枠組みを提案する。
我々の手法は、視覚変換器(ViT)、Large Language Models(LLM)、NeRF(Neural Radiance Fields)において、既存の低ランクモデルの強化を証明している。
論文 参考訳(メタデータ) (2024-03-28T08:58:20Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Hyperparameter Tuning for Causal Inference with Double Machine Learning:
A Simulation Study [4.526082390949313]
機械学習手法の予測性能と結果の因果推定との関係を実証的に評価する。
我々は,2019 Atlantic Causal Inference Conference Data Challengeのデータを用いて,広範囲にわたるシミュレーション研究を行う。
論文 参考訳(メタデータ) (2024-02-07T09:01:51Z) - Machine unlearning through fine-grained model parameters perturbation [26.653596302257057]
そこで本研究では,不エクササイズマシンの非学習戦略であるTop-KパラメータとRandom-kパラメータの微粒化を提案する。
また,機械学習の有効性を評価する上での課題にも取り組む。
論文 参考訳(メタデータ) (2024-01-09T07:14:45Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
本稿ではパラメータ共有言語モデルの推論効率を向上させる手法を提案する。
また、完全あるいは部分的に共有されたモデルにつながる単純な事前学習手法を提案する。
その結果,本手法が自己回帰的および自己符号化的PLMに与える影響が示された。
論文 参考訳(メタデータ) (2023-10-19T15:13:58Z) - Improve Noise Tolerance of Robust Loss via Noise-Awareness [60.34670515595074]
本稿では,NARL-Adjuster(NARL-Adjuster for brevity)と呼ばれる,ハイパーパラメータ予測関数を適応的に学習するメタラーニング手法を提案する。
4つのSOTAロバストな損失関数を我々のアルゴリズムに統合し,提案手法の一般性および性能をノイズ耐性と性能の両面で検証した。
論文 参考訳(メタデータ) (2023-01-18T04:54:58Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。