How to train your VAE
- URL: http://arxiv.org/abs/2309.13160v3
- Date: Fri, 21 Jun 2024 19:15:54 GMT
- Title: How to train your VAE
- Authors: Mariano Rivera,
- Abstract summary: Variational Autoencoders (VAEs) have become a cornerstone in generative modeling and representation learning within machine learning.
This paper explores interpreting the Kullback-Leibler (KL) Divergence, a critical component within the Evidence Lower Bound (ELBO)
The proposed method redefines the ELBO with a mixture of Gaussians for the posterior probability, introduces a regularization term, and employs a PatchGAN discriminator to enhance texture realism.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Variational Autoencoders (VAEs) have become a cornerstone in generative modeling and representation learning within machine learning. This paper explores a nuanced aspect of VAEs, focusing on interpreting the Kullback-Leibler (KL) Divergence, a critical component within the Evidence Lower Bound (ELBO) that governs the trade-off between reconstruction accuracy and regularization. Meanwhile, the KL Divergence enforces alignment between latent variable distributions and a prior imposing a structure on the overall latent space but leaves individual variable distributions unconstrained. The proposed method redefines the ELBO with a mixture of Gaussians for the posterior probability, introduces a regularization term to prevent variance collapse, and employs a PatchGAN discriminator to enhance texture realism. Implementation details involve ResNetV2 architectures for both the Encoder and Decoder. The experiments demonstrate the ability to generate realistic faces, offering a promising solution for enhancing VAE-based generative models.
Related papers
- Gaussian Mixture Vector Quantization with Aggregated Categorical Posterior [5.862123282894087]
We introduce the Vector Quantized Variational Autoencoder (VQ-VAE)
VQ-VAE is a type of variational autoencoder using discrete embedding as latent.
We show that GM-VQ improves codebook utilization and reduces information loss without relying on handcrafteds.
arXiv Detail & Related papers (2024-10-14T05:58:11Z) - Protect Before Generate: Error Correcting Codes within Discrete Deep Generative Models [3.053842954605396]
We introduce a novel method that enhances variational inference in discrete latent variable models.
We leverage Error Correcting Codes (ECCs) to introduce redundancy in the latent representations.
This redundancy is then exploited by the variational posterior to yield more accurate estimates.
arXiv Detail & Related papers (2024-10-10T11:59:58Z) - Unscented Autoencoder [3.0108936184913295]
Variational Autoencoder (VAE) is a seminal approach in deep generative modeling with latent variables.
We apply the Unscented Transform (UT) -- a well-known distribution approximation used in the Unscented Kalman Filter (UKF) from the field of filtering.
We derive a novel, deterministic-sampling flavor of the VAE, the Unscented Autoencoder (UAE), trained purely with regularization-like terms on the per-sample posterior.
arXiv Detail & Related papers (2023-06-08T14:53:02Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Disentangling Generative Factors of Physical Fields Using Variational
Autoencoders [0.0]
This work explores the use of variational autoencoders (VAEs) for non-linear dimension reduction.
A disentangled decomposition is interpretable and can be transferred to a variety of tasks including generative modeling.
arXiv Detail & Related papers (2021-09-15T16:02:43Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
controllable generation with GANs remains a challenging research problem.
We propose an unsupervised framework to learn a distribution of latent codes that control the generator through self-training.
Our framework exhibits better disentanglement compared to other variants such as the variational autoencoder.
arXiv Detail & Related papers (2020-07-17T21:50:35Z) - Disentangled Representation Learning and Generation with Manifold
Optimization [10.69910379275607]
This work presents a representation learning framework that explicitly promotes disentanglement by encouraging directions of variations.
Our theoretical discussion and various experiments show that the proposed model improves over many VAE variants in terms of both generation quality and disentangled representation learning.
arXiv Detail & Related papers (2020-06-12T10:00:49Z) - Preventing Posterior Collapse with Levenshtein Variational Autoencoder [61.30283661804425]
We propose to replace the evidence lower bound (ELBO) with a new objective which is simple to optimize and prevents posterior collapse.
We show that Levenstein VAE produces more informative latent representations than alternative approaches to preventing posterior collapse.
arXiv Detail & Related papers (2020-04-30T13:27:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.