論文の概要: Meet MASKS: A novel Multi-Classifier's verification approach
- arxiv url: http://arxiv.org/abs/2007.10090v3
- Date: Thu, 2 Jun 2022 15:26:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-14 05:55:14.751204
- Title: Meet MASKS: A novel Multi-Classifier's verification approach
- Title(参考訳): meet masks: 新たなマルチクラス化の検証アプローチ
- Authors: Amirhoshang Hoseinpour Dehkordi, Majid Alizadeh, Ali Movaghar
- Abstract要約: 複数の分類器から構成されるマルチエージェントシステムは、安全性の満足度を検証するために設計されている。
分散知識の集約に関する推論を考察する論理モデルが提案されている。
厳密な評価として、Fashion-MNIST、MNIST、Fruit-360データセットに適用した。
- 参考スコア(独自算出の注目度): 2.588063924663932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, a new ensemble approach for classifiers is introduced. A
verification method for better error elimination is developed through the
integration of multiple classifiers. A multi-agent system comprised of multiple
classifiers is designed to verify the satisfaction of the safety property. In
order to examine the reasoning concerning the aggregation of the distributed
knowledge, a logical model has been proposed. To verify predefined properties,
a Multi-Agent Systems' Knowledge-Sharing algorithm (MASKS) has been formulated
and developed. As a rigorous evaluation, we applied this model to the
Fashion-MNIST, MNIST, and Fruit-360 datasets, where it reduced the error rate
to approximately one-tenth of the individual classifiers.
- Abstract(参考訳): 本研究では,分類器に対する新しいアンサンブル手法を提案する。
複数分類器の統合により,より優れた誤り除去のための検証手法を開発した。
複数の分類器からなるマルチエージェントシステムは、安全特性の満足度を検証するために設計されている。
分散知識の集約に関する推論を検討するために,論理モデルが提案されている。
事前定義された特性を検証するため、マルチエージェントシステムの知識共有アルゴリズム(MASKS)が策定・開発されている。
厳密な評価として,このモデルをFashion-MNIST,MNIST,Fruit-360データセットに適用した。
関連論文リスト
- Toward Multi-class Anomaly Detection: Exploring Class-aware Unified Model against Inter-class Interference [67.36605226797887]
統一型異常検出(MINT-AD)のためのマルチクラスインプリシトニューラル表現変換器を提案する。
マルチクラス分布を学習することにより、モデルが変換器デコーダのクラス対応クエリ埋め込みを生成する。
MINT-ADは、カテゴリと位置情報を特徴埋め込み空間に投影することができ、さらに分類と事前確率損失関数によって監督される。
論文 参考訳(メタデータ) (2024-03-21T08:08:31Z) - Unified Classification and Rejection: A One-versus-All Framework [47.58109235690227]
我々は,オープンな集合分類器を構築するための統一的なフレームワークを構築した。
K の $-class 問題を $ K $ 1-versus-all (OVA) のバイナリ分類タスクに分解することにより、OVA 分類器のスコアを組み合わせることで、$ (K+1) の $-class rear 確率が得られることを示す。
一般的なOSRおよびOOD検出データセットの実験により、提案するフレームワークは、単一のマルチクラス分類器を使用して、競合性能を得ることを示した。
論文 参考訳(メタデータ) (2023-11-22T12:47:12Z) - LafitE: Latent Diffusion Model with Feature Editing for Unsupervised
Multi-class Anomaly Detection [12.596635603629725]
我々は,通常のデータのみにアクセス可能な場合に,複数のクラスに属するオブジェクトから異常を検出する統一モデルを開発した。
まず、生成的アプローチについて検討し、再構成のための潜伏拡散モデルについて検討する。
「拡散モデルの入力特徴空間を修正し、アイデンティティショートカットをさらに緩和する特徴編集戦略を導入する。」
論文 参考訳(メタデータ) (2023-07-16T14:41:22Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD)は、ラベル付きサンプルから学習した知識を用いて、ラベルなしデータセットで新しいカテゴリを発見することを目的としている。
パラメトリック分類器の故障を調査し,高品質な監視が可能であった場合の過去の設計選択の有効性を検証し,信頼性の低い疑似ラベルを重要課題として同定する。
エントロピー正規化の利点を生かし、複数のGCDベンチマークにおける最先端性能を実現し、未知のクラス数に対して強いロバスト性を示す、単純で効果的なパラメトリック分類法を提案する。
論文 参考訳(メタデータ) (2022-11-21T18:47:11Z) - Evolving Multi-Label Fuzzy Classifier [5.53329677986653]
マルチラベル分類は、同時に複数のクラスに1つのサンプルを割り当てるという問題に対処するために、機械学習コミュニティで多くの注目を集めている。
本稿では,新たなマルチラベルサンプルをインクリメンタルかつシングルパスで自己適応・自己展開可能な多ラベルファジィ分類器(EFC-ML)を提案する。
論文 参考訳(メタデータ) (2022-03-29T08:01:03Z) - Gated recurrent units and temporal convolutional network for multilabel
classification [122.84638446560663]
本研究は,マルチラベル分類を管理するための新しいアンサンブル手法を提案する。
提案手法のコアは,Adamグラデーション最適化アプローチの変種で訓練された,ゲート再帰単位と時間畳み込みニューラルネットワークの組み合わせである。
論文 参考訳(メタデータ) (2021-10-09T00:00:16Z) - Multiple Classifiers Based Maximum Classifier Discrepancy for
Unsupervised Domain Adaptation [25.114533037440896]
本稿では、2つの分類器の構造を複数の分類器に拡張し、その性能をさらに向上することを提案する。
平均的に、3つの分類器の構造を採用すると、精度と効率のトレードオフとして最高の性能が得られることを示す。
論文 参考訳(メタデータ) (2021-08-02T03:00:13Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
任意のバイナリ分類器によって生成される検出スコアから2次元表現を導出する簡単な方法を提案する。
ランク相関に基づいて,任意のスコアを用いた分類器の視覚的比較を容易にする。
提案手法は完全に汎用的であり,任意の検出タスクに適用可能だが,自動話者検証と音声アンチスプーフィングシステムによるスコアを用いた手法を実証する。
論文 参考訳(メタデータ) (2021-06-11T13:03:33Z) - Trusted Multi-View Classification [76.73585034192894]
本稿では,信頼された多視点分類と呼ばれる新しい多視点分類手法を提案する。
さまざまなビューをエビデンスレベルで動的に統合することで、マルチビュー学習のための新しいパラダイムを提供する。
提案アルゴリズムは,分類信頼性とロバスト性の両方を促進するために,複数のビューを併用する。
論文 参考訳(メタデータ) (2021-02-03T13:30:26Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。