論文の概要: CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward
- arxiv url: http://arxiv.org/abs/2508.03686v1
- Date: Tue, 05 Aug 2025 17:55:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-06 18:18:56.112428
- Title: CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward
- Title(参考訳): Compass Verifier: LLMの評価とアウトカムリワードのための統一かつロバストな検証器
- Authors: Shudong Liu, Hongwei Liu, Junnan Liu, Linchen Xiao, Songyang Gao, Chengqi Lyu, Yuzhe Gu, Wenwei Zhang, Derek F. Wong, Songyang Zhang, Kai Chen,
- Abstract要約: 評価と結果報酬のための正確で堅牢な軽量検証モデルであるCompassVerifierを開発した。
数学、知識、多種多様な推論タスクにまたがる多分野の能力を示し、様々な答えの型を処理する能力を示す。
我々は,複数のデータソースから収集したモデル出力からなるVerifierBenchベンチマークを導入し,メタエラーパターンを手動で解析してCompassVerifierを強化する。
- 参考スコア(独自算出の注目度): 50.97588334916863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Answer verification is crucial not only for evaluating large language models (LLMs) by matching their unstructured outputs against standard answers, but also serves as the reward model to guide LLM optimization. Most evaluation frameworks rely on regularized matching or employ general LLMs for answer verification, which demands extensive, repetitive customization for regex rules or evaluation prompts. Two fundamental limitations persist in current methodologies: 1) the absence of comprehensive benchmarks that systematically evaluate verification capabilities across different LLMs; and 2) the nascent stage of verifier development, where existing approaches lack both the robustness to handle complex edge cases and the generalizability across different domains. In this work, we develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward. It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types, including multi-subproblems, formulas, and sequence answers, while effectively identifying abnormal/invalid responses. We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier. We anticipate that CompassVerifier and VerifierBench will facilitate answer verification, evaluation protocols, and reinforcement learning research. Code and dataset are available at https://github.com/open-compass/CompassVerifier.
- Abstract(参考訳): 回答検証は、構造化されていない出力と標準回答とを一致させることで、大きな言語モデル(LLM)を評価するだけでなく、LLM最適化を導く報酬モデルとしても機能する。
ほとんどの評価フレームワークは、正規化されたマッチングや一般のLCMを使用して回答の検証を行い、レジェックスルールや評価プロンプトに対して、広範囲に反復的なカスタマイズを要求する。
現在の方法論には2つの基本的な制限がある。
1)異なるLLMの検証能力を体系的に評価する総合的なベンチマークが存在しないこと。
2) 検証器開発の初期段階では, 複雑なエッジケースを扱う堅牢性と, ドメイン間の一般化性の両方が欠如している。
本研究では、評価と結果報酬のための正確で堅牢な軽量検証モデルであるCompassVerifierを開発する。
数学、知識、多種多様な推論タスクにまたがる多分野の能力を示し、多サブプロブレム、公式、シーケンス応答を含む様々な応答タイプを処理でき、異常/無効な応答を効果的に識別できる。
我々は,複数のデータソースから収集したモデル出力からなるVerifierBenchベンチマークを導入し,メタエラーパターンを手動で解析してCompassVerifierを強化する。
我々は,CompassVerifierとVerifierBenchが,回答検証,評価プロトコル,強化学習研究を容易にすることを期待する。
コードとデータセットはhttps://github.com/open-compass/CompassVerifierで入手できる。
関連論文リスト
- SPARE: Single-Pass Annotation with Reference-Guided Evaluation for Automatic Process Supervision and Reward Modelling [70.01883340129204]
シングルパス。
リファレンスガイドによる評価(SPARE)
参照ソリューションにおける各ソリューションステップを1つまたは複数のステップにアライメントすることで、単一のパス毎のアノテーションを可能にする新しい構造化フレームワーク。
SPAREは2.6倍の効率を実現し、実行時の38%しか必要としない。
論文 参考訳(メタデータ) (2025-06-18T14:37:59Z) - Ask, Fail, Repeat: Meeseeks, an Iterative Feedback Benchmark for LLMs' Multi-turn Instruction-Following Ability [5.393872292662451]
Meeseeksは,反復的なフィードバックフレームワークを通じて,現実的な人間-LLMインタラクションをシミュレートする。
MeeseeksはマルチターンシナリオにおけるLLMの命令フォロー機能に関する貴重な洞察を提供する。
論文 参考訳(メタデータ) (2025-04-30T13:28:19Z) - Beyond the Singular: The Essential Role of Multiple Generations in Effective Benchmark Evaluation and Analysis [10.133537818749291]
大規模言語モデル(LLM)は、現実世界のアプリケーションにおいて重要なユーティリティを実証している。
LLMの能力を評価するにはベンチマーク評価が不可欠である。
論文 参考訳(メタデータ) (2025-02-13T03:43:33Z) - Towards Automated Fact-Checking of Real-World Claims: Exploring Task Formulation and Assessment with LLMs [32.45604456988931]
本研究では,Large Language Models(LLMs)を用いたAFC(Automated Fact-Checking)のベースライン比較を確立する。
また,2007-2024年にPoitiFactから収集された17,856件のクレームに対して,制限されたWeb検索によって得られた証拠を用いてLlama-3モデルの評価を行った。
以上の結果から, LLMは微調整をせずに, 分類精度, 正当化品質において, より小型のLLMより一貫して優れていたことが示唆された。
論文 参考訳(メタデータ) (2025-02-13T02:51:17Z) - Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
大規模言語モデル (LLM) はシーケンシャル・ツー・シーケンス・アプローチによってタスクのランク付けに使用されている。
この階調のパラダイムは、より大きな候補集合を反復的に扱うためにスライディングウインドウ戦略を必要とする。
そこで本稿では,LLMを用いた自己校正リストのランク付け手法を提案する。
論文 参考訳(メタデータ) (2024-11-07T10:31:31Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) は、質問回答(QA)のようなタスクにおける応答精度を高めるための有望なアプローチとして登場した。
本稿では,クエリの複雑さに基づいて,LLMの最適戦略を動的に選択できる適応型QAフレームワークを提案する。
オープンドメインのQAデータセットを用いて、複数のクエリの複雑さを網羅し、QAシステムの全体的な効率性と精度を高めることを示す。
論文 参考訳(メタデータ) (2024-03-21T13:52:30Z) - AuditLLM: A Tool for Auditing Large Language Models Using Multiprobe Approach [8.646131951484696]
AuditLLMは様々な大規模言語モデル(LLM)のパフォーマンスを方法論的に監査するために設計された新しいツールである。
堅牢で信頼性があり、一貫性のあるLCMは、同じ質問の可変なフレーズ付きバージョンに対する意味論的に類似した応答を生成することが期待されている。
あるレベルの矛盾が潜在的なバイアス、幻覚、その他の問題の指標であることが示されている。
論文 参考訳(メタデータ) (2024-02-14T17:31:04Z) - Factcheck-Bench: Fine-Grained Evaluation Benchmark for Automatic Fact-checkers [121.53749383203792]
本稿では,大規模言語モデル (LLM) 生成応答の事実性に注釈を付けるための総合的なエンドツーエンドソリューションを提案する。
オープンドメインの文書レベルの事実性ベンチマークを,クレーム,文,文書の3段階の粒度で構築する。
予備実験によると、FacTool、FactScore、Perplexityは虚偽の主張を識別するのに苦労している。
論文 参考訳(メタデータ) (2023-11-15T14:41:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。