論文の概要: Human-like Energy Management Based on Deep Reinforcement Learning and
Historical Driving Experiences
- arxiv url: http://arxiv.org/abs/2007.10126v2
- Date: Tue, 26 Sep 2023 01:22:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-27 18:45:08.487421
- Title: Human-like Energy Management Based on Deep Reinforcement Learning and
Historical Driving Experiences
- Title(参考訳): 深部強化学習と歴史的運転経験に基づく人間的エネルギー管理
- Authors: Hao Chen, Xiaolin Tang, Guo Hu, Teng Liu
- Abstract要約: ハイブリッド電気自動車の開発は、高度かつ効率的なエネルギー管理戦略(EMS)に依存している
本稿では, 深部強化学習法と過去の運転データに基づいて, ハイブリッド電気自動車の人為的なエネルギー管理の枠組みについて述べる。
燃料経済と収束率の改善は、構築された制御構造の有効性を示している。
- 参考スコア(独自算出の注目度): 5.625230013691758
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Development of hybrid electric vehicles depends on an advanced and efficient
energy management strategy (EMS). With online and real-time requirements in
mind, this article presents a human-like energy management framework for hybrid
electric vehicles according to deep reinforcement learning methods and
collected historical driving data. The hybrid powertrain studied has a
series-parallel topology, and its control-oriented modeling is founded first.
Then, the distinctive deep reinforcement learning (DRL) algorithm, named deep
deterministic policy gradient (DDPG), is introduced. To enhance the derived
power split controls in the DRL framework, the global optimal control
trajectories obtained from dynamic programming (DP) are regarded as expert
knowledge to train the DDPG model. This operation guarantees the optimality of
the proposed control architecture. Moreover, the collected historical driving
data based on experienced drivers are employed to replace the DP-based
controls, and thus construct the human-like EMSs. Finally, different categories
of experiments are executed to estimate the optimality and adaptability of the
proposed human-like EMS. Improvements in fuel economy and convergence rate
indicate the effectiveness of the constructed control structure.
- Abstract(参考訳): ハイブリッド電気自動車の開発は、先進的で効率的なエネルギー管理戦略(ems)に依存する。
本稿では, オンラインおよびリアルタイムの要件を念頭に, 深部強化学習手法によるハイブリッド電気自動車の人為的なエネルギー管理の枠組みを示し, 過去の運転データを収集する。
研究対象のハイブリッドパワートレインは並列トポロジーを持ち、その制御指向モデリングが最初に確立されている。
次に,Dep Deterministic Policy gradient (DDPG) と呼ばれるDRLアルゴリズムを導入する。
DRLフレームワークの導出電力分割制御を強化するため、動的プログラミング(DP)から得られたグローバル最適制御軌跡を専門知識とみなし、DDPGモデルを訓練する。
この操作は、提案した制御アーキテクチャの最適性を保証する。
さらに、経験豊富な運転者に基づく過去の運転データを用いて、DPベースの制御を代替し、人間ライクなEMSを構築する。
最後に,提案するヒト様emsの最適性と適応性を評価するために,実験の異なるカテゴリが実行される。
燃費と収束率の改善は、構築した制御構造の有効性を示している。
関連論文リスト
- Data-driven modeling and supervisory control system optimization for plug-in hybrid electric vehicles [16.348774515562678]
プラグインハイブリッド電気自動車(PHEV)のための学習型インテリジェントエネルギー管理システムは,効率的なエネルギー利用の実現に不可欠である。
彼らのアプリケーションは現実世界でシステム信頼性の課題に直面しており、元の機器メーカー(OEM)が広く受け入れられることを防ぐ。
本稿では,水平延長型強化学習(RL)に基づくエネルギー管理と等価消費最小化戦略(ECMS)を組み合わせた実車用アプリケーション指向制御フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-13T13:04:42Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Federated Reinforcement Learning for Electric Vehicles Charging Control
on Distribution Networks [42.04263644600909]
マルチエージェント深部強化学習(MADRL)はEV充電制御において有効であることが証明されている。
既存のMADRLベースのアプローチでは、配電ネットワークにおけるEV充電/放電の自然な電力フローを考慮できない。
本稿では,マルチEV充電/放電と最適電力流で動作する放射分布ネットワーク(RDN)を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-17T05:34:46Z) - Energy Management of Multi-mode Plug-in Hybrid Electric Vehicle using
Multi-agent Deep Reinforcement Learning [6.519522573636577]
多モードプラグインハイブリッド電気自動車(PHEV)技術は、脱炭に寄与する経路の1つである。
本稿では,多モードPHEVのエネルギー管理のためのマルチエージェント深部強化学習(MADRL)制御法について検討する。
統合DDPG設定と0.2の関連性比を用いて、MADRLシステムはシングルエージェント学習システムと比較して最大4%のエネルギーを節約でき、従来のルールベースシステムに比べて最大23.54%のエネルギーを節約できる。
論文 参考訳(メタデータ) (2023-03-16T21:31:55Z) - On Transforming Reinforcement Learning by Transformer: The Development
Trajectory [97.79247023389445]
Transformerは元々自然言語処理用に開発されたもので、コンピュータビジョンでも大きな成功を収めている。
既存の開発をアーキテクチャ拡張と軌道最適化の2つのカテゴリに分類する。
ロボット操作,テキストベースのゲーム,ナビゲーション,自律運転におけるTRLの主な応用について検討する。
論文 参考訳(メタデータ) (2022-12-29T03:15:59Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Model-based versus Model-free Deep Reinforcement Learning for Autonomous
Racing Cars [46.64253693115981]
本稿では,モデルに基づく深層強化学習エージェントが現実世界の自律車両制御タスクに一般化する方法について検討する。
本稿では,想像力で学習可能なモデルベースエージェント,パフォーマンス,サンプル効率,タスク完了,一般化に関して,モデルフリーエージェントを実質的に上回っていることを示す。
論文 参考訳(メタデータ) (2021-03-08T17:15:23Z) - Data-Driven Transferred Energy Management Strategy for Hybrid Electric
Vehicles via Deep Reinforcement Learning [3.313774035672581]
本稿では,DRL法と転写学習(TL)を併用したリアルタイムEMSを提案する。
関連するEMSは、Transport Secure Data Centerから収集された実世界の運転サイクルデータセットから導出され、評価される。
シミュレーションの結果, DRLをベースとしたEMSは, 時間消費を効果的に低減し, 制御性能を保証できることが示唆された。
論文 参考訳(メタデータ) (2020-09-07T17:53:07Z) - Adaptive Energy Management for Real Driving Conditions via Transfer
Reinforcement Learning [19.383907178714345]
本稿では, 並列トポロジを用いたハイブリッド電気自動車(HEV)における伝達強化学習(RL)に基づく適応エネルギー管理手法を提案する。
上位レベルは、駆動サイクル変換(DCT)を介してRLフレームワークのQ値テーブルを変換する方法を特徴付ける。
低レベルは、変換されたQ値テーブルとTPMで対応する制御戦略を設定する方法を決定する。
論文 参考訳(メタデータ) (2020-07-24T15:06:23Z) - Transfer Deep Reinforcement Learning-enabled Energy Management Strategy
for Hybrid Tracked Vehicle [8.327437591702163]
本稿では、深部強化学習(DRL)と伝達学習(TL)を組み合わせたハイブリッド電気自動車の適応エネルギー管理戦略を提案する。
退屈なトレーニング時間でDRLの欠陥に対処することを目的としている。
DRLおよびTL対応制御ポリシは、エネルギー効率を向上し、システム性能を向上させることができる。
論文 参考訳(メタデータ) (2020-07-16T23:39:34Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。